5,873 research outputs found

    Pairwise transitive 2-designs

    Full text link
    We classify the pairwise transitive 2-designs, that is, 2-designs such that a group of automorphisms is transitive on the following five sets of ordered pairs: point-pairs, incident point-block pairs, non-incident point-block pairs, intersecting block-pairs and non-intersecting block-pairs. These 2-designs fall into two classes: the symmetric ones and the quasisymmetric ones. The symmetric examples include the symmetric designs from projective geometry, the 11-point biplane, the Higman-Sims design, and designs of points and quadratic forms on symplectic spaces. The quasisymmetric examples arise from affine geometry and the point-line geometry of projective spaces, as well as several sporadic examples.Comment: 28 pages, updated after review proces

    Efficient Two-Stage Group Testing Algorithms for Genetic Screening

    Full text link
    Efficient two-stage group testing algorithms that are particularly suited for rapid and less-expensive DNA library screening and other large scale biological group testing efforts are investigated in this paper. The main focus is on novel combinatorial constructions in order to minimize the number of individual tests at the second stage of a two-stage disjunctive testing procedure. Building on recent work by Levenshtein (2003) and Tonchev (2008), several new infinite classes of such combinatorial designs are presented.Comment: 14 pages; to appear in "Algorithmica". Part of this work has been presented at the ICALP 2011 Group Testing Workshop; arXiv:1106.368

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications
    corecore