5,494 research outputs found

    Extremal Infinite Graph Theory

    Get PDF
    We survey various aspects of infinite extremal graph theory and prove several new results. The lead role play the parameters connectivity and degree. This includes the end degree. Many open problems are suggested.Comment: 41 pages, 16 figure

    Graphs, free groups and the Hanna Neumann conjecture

    Full text link
    A new bound for the rank of the intersection of finitely generated subgroups of a free group is given, formulated in topological terms, and very much in the spirit of Stallings. The bound is a contribution to (although unfortunately not a solution of) the strengthened Hanna Neumann conjecture.Comment: J. Group Theory (to appear

    Trees and Matchings

    Full text link
    In this article, Temperley's bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spanning trees (often called arborescences) of any planar graph G can be put into a one-to-one weight-preserving correspondence with the perfect matchings of a related planar graph H. One special case of this result is a bijection between perfect matchings of the hexagonal honeycomb lattice and directed spanning trees of a triangular lattice. Another special case gives a correspondence between perfect matchings of the ``square-octagon'' lattice and directed weighted spanning trees on a directed weighted version of the cartesian lattice. In conjunction with results of Kenyon, our main theorem allows us to compute the measures of all cylinder events for random spanning trees on any (directed, weighted) planar graph. Conversely, in cases where the perfect matching model arises from a tree model, Wilson's algorithm allows us to quickly generate random samples of perfect matchings.Comment: 32 pages, 19 figures (minor revisions from version 1

    Dimers, Tilings and Trees

    Get PDF
    Generalizing results of Temperley, Brooks, Smith, Stone and Tutte and others we describe a natural equivalence between three planar objects: weighted bipartite planar graphs; planar Markov chains; and tilings with convex polygons. This equivalence provides a measure-preserving bijection between dimer coverings of a weighted bipartite planar graph and spanning trees on the corresponding Markov chain. The tilings correspond to harmonic functions on the Markov chain and to ``discrete analytic functions'' on the bipartite graph. The equivalence is extended to infinite periodic graphs, and we classify the resulting ``almost periodic'' tilings and harmonic functions.Comment: 23 pages, 5 figure

    Anchored burning bijections on finite and infinite graphs

    Get PDF
    Let GG be an infinite graph such that each tree in the wired uniform spanning forest on GG has one end almost surely. On such graphs GG, we give a family of continuous, measure preserving, almost one-to-one mappings from the wired spanning forest on GG to recurrent sandpiles on GG, that we call anchored burning bijections. In the special case of Zd\mathbb{Z}^d, d≥2d \ge 2, we show how the anchored bijection, combined with Wilson's stacks of arrows construction, as well as other known results on spanning trees, yields a power law upper bound on the rate of convergence to the sandpile measure along any exhaustion of Zd\mathbb{Z}^d. We discuss some open problems related to these findings.Comment: 26 pages; 1 EPS figure. Minor alterations made after comments from refere

    Processes on Unimodular Random Networks

    Full text link
    We investigate unimodular random networks. Our motivations include their characterization via reversibility of an associated random walk and their similarities to unimodular quasi-transitive graphs. We extend various theorems concerning random walks, percolation, spanning forests, and amenability from the known context of unimodular quasi-transitive graphs to the more general context of unimodular random networks. We give properties of a trace associated to unimodular random networks with applications to stochastic comparison of continuous-time random walk.Comment: 66 pages; 3rd version corrects formula (4.4) -- the published version is incorrect --, as well as a minor error in the proof of Proposition 4.10; 4th version corrects proof of Proposition 7.1; 5th version corrects proof of Theorem 5.1; 6th version makes a few more minor correction
    • …
    corecore