903 research outputs found

    Equivelar and d-Covered Triangulations of Surfaces. I

    Full text link
    We survey basic properties and bounds for qq-equivelar and dd-covered triangulations of closed surfaces. Included in the survey is a list of the known sources for qq-equivelar and dd-covered triangulations. We identify all orientable and non-orientable surfaces MM of Euler characteristic 0>χ(M)2300>\chi(M)\geq -230 which admit non-neighborly qq-equivelar triangulations with equality in the upper bound q12(5+4924χ(M))q\leq\Bigl\lfloor\tfrac{1}{2}(5+\sqrt{49-24\chi (M)})\Bigl\rfloor. These examples give rise to dd-covered triangulations with equality in the upper bound d212(5+4924χ(M))d\leq2\Bigl\lfloor\tfrac{1}{2}(5+\sqrt{49-24\chi (M)})\Bigl\rfloor. A generalization of Ringel's cyclic 7mod127{\rm mod}12 series of neighborly orientable triangulations to a two-parameter family of cyclic orientable triangulations Rk,nR_{k,n}, k0k\geq 0, n7+12kn\geq 7+12k, is the main result of this paper. In particular, the two infinite subseries Rk,7+12k+1R_{k,7+12k+1} and Rk,7+12k+2R_{k,7+12k+2}, k1k\geq 1, provide non-neighborly examples with equality for the upper bound for qq as well as derived examples with equality for the upper bound for dd.Comment: 21 pages, 4 figure

    The complexity of the normal surface solution space

    Full text link
    Normal surface theory is a central tool in algorithmic three-dimensional topology, and the enumeration of vertex normal surfaces is the computational bottleneck in many important algorithms. However, it is not well understood how the number of such surfaces grows in relation to the size of the underlying triangulation. Here we address this problem in both theory and practice. In theory, we tighten the exponential upper bound substantially; furthermore, we construct pathological triangulations that prove an exponential bound to be unavoidable. In practice, we undertake a comprehensive analysis of millions of triangulations and find that in general the number of vertex normal surfaces is remarkably small, with strong evidence that our pathological triangulations may in fact be the worst case scenarios. This analysis is the first of its kind, and the striking behaviour that we observe has important implications for the feasibility of topological algorithms in three dimensions.Comment: Extended abstract (i.e., conference-style), 14 pages, 8 figures, 2 tables; v2: added minor clarification

    Increasing the number of fibered faces of arithmetic hyperbolic 3-manifolds

    Get PDF
    We exhibit a closed hyperbolic 3-manifold which satisfies a very strong form of Thurston's Virtual Fibration Conjecture. In particular, this manifold has finite covers which fiber over the circle in arbitrarily many ways. More precisely, it has a tower of finite covers where the number of fibered faces of the Thurston norm ball goes to infinity, in fact faster than any power of the logarithm of the degree of the cover, and we give a more precise quantitative lower bound. The example manifold M is arithmetic, and the proof uses detailed number-theoretic information, at the level of the Hecke eigenvalues, to drive a geometric argument based on Fried's dynamical characterization of the fibered faces. The origin of the basic fibration of M over the circle is the modular elliptic curve E=X_0(49), which admits multiplication by the ring of integers of Q[sqrt(-7)]. We first base change the holomorphic differential on E to a cusp form on GL(2) over K=Q[sqrt(-3)], and then transfer over to a quaternion algebra D/K ramified only at the primes above 7; the fundamental group of M is a quotient of the principal congruence subgroup of level 7 of the multiplicative group of a maximal order of D. To analyze the topological properties of M, we use a new practical method for computing the Thurston norm, which is of independent interest. We also give a non-compact finite-volume hyperbolic 3-manifold with the same properties by using a direct topological argument.Comment: 42 pages, 7 figures; V2: minor improvements, to appear in Amer. J. Mat

    Local limits of uniform triangulations in high genus

    Full text link
    We prove a conjecture of Benjamini and Curien stating that the local limits of uniform random triangulations whose genus is proportional to the number of faces are the Planar Stochastic Hyperbolic Triangulations (PSHT) defined in arXiv:1401.3297. The proof relies on a combinatorial argument and the Goulden--Jackson recurrence relation to obtain tightness, and probabilistic arguments showing the uniqueness of the limit. As a consequence, we obtain asymptotics up to subexponential factors on the number of triangulations when both the size and the genus go to infinity. As a part of our proof, we also obtain the following result of independent interest: if a random triangulation of the plane TT is weakly Markovian in the sense that the probability to observe a finite triangulation tt around the root only depends on the perimeter and volume of tt, then TT is a mixture of PSHT.Comment: 36 pages, 10 figure
    corecore