238 research outputs found

    A Paraconsistent Higher Order Logic

    Full text link
    Classical logic predicts that everything (thus nothing useful at all) follows from inconsistency. A paraconsistent logic is a logic where an inconsistency does not lead to such an explosion, and since in practice consistency is difficult to achieve there are many potential applications of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker, Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte

    An Entailment Relation for Reasoning on the Web

    Get PDF
    Reasoning on the Web is receiving an increasing attention because of emerging fields such as Web adaption and Semantic Web. Indeed, the advanced functionalities striven for in these fields call for reasoning capabilities. Reasoning on the Web, however, is usually done using existing techniques rarely fitting the Web. As a consequence, additional data processing like data conversion from Web formats (e.g. XML or HTML) into some other formats (e.g. classical logic terms and formulas) is often needed and aspects of the Web (e.g. its inherent inconsistency) are neglected. This article first gives requirements for an entailment tuned to reasoning on the Web. Then, it describes how classical logic’s entailment can be modified so as to enforce these requirements. Finally, it discusses how the proposed entailment can be used in applying logic programming to reasoning on the Web

    Interval Neutrosophic Sets and Logic: Theory and Applications in Computing

    Get PDF
    A neutrosophic set is a part of neutrosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. The neutrosophic set is a powerful general formal framework that has been recently proposed. However, the neutrosophic set needs to be specified from a technical point of view. Here, we define the set-theoretic operators on an instance of a neutrosophic set, and call it an Interval Neutrosophic Set (INS). We prove various properties of INS, which are connected to operations and relations over INS. We also introduce a new logic system based on interval neutrosophic sets. We study the interval neutrosophic propositional calculus and interval neutrosophic predicate calculus. We also create a neutrosophic logic inference system based on interval neutrosophic logic. Under the framework of the interval neutrosophic set, we propose a data model based on the special case of the interval neutrosophic sets called Neutrosophic Data Model. This data model is the extension of fuzzy data model and paraconsistent data model. We generalize the set-theoretic operators and relation-theoretic operators of fuzzy relations and paraconsistent relations to neutrosophic relations. We propose the generalized SQL query constructs and tuple-relational calculus for Neutrosophic Data Model. We also design an architecture of Semantic Web Services agent based on the interval neutrosophic logic and do the simulation study

    Preferential and Preferential-discriminative Consequence relations

    Full text link
    The present paper investigates consequence relations that are both non-monotonic and paraconsistent. More precisely, we put the focus on preferential consequence relations, i.e. those relations that can be defined by a binary preference relation on states labelled by valuations. We worked with a general notion of valuation that covers e.g. the classical valuations as well as certain kinds of many-valued valuations. In the many-valued cases, preferential consequence relations are paraconsistant (in addition to be non-monotonic), i.e. they are capable of drawing reasonable conclusions which contain contradictions. The first purpose of this paper is to provide in our general framework syntactic characterizations of several families of preferential relations. The second and main purpose is to provide, again in our general framework, characterizations of several families of preferential discriminative consequence relations. They are defined exactly as the plain version, but any conclusion such that its negation is also a conclusion is rejected (these relations bring something new essentially in the many-valued cases).Comment: team Logic and Complexity, written in 2004-200

    Formal inconsistency and evolutionary databases

    Get PDF
    This paper introduces new logical systems which axiomatize a formal representation of inconsistency (here taken to be equivalent to contradictoriness) in classical logic. We start from an intuitive semantical account of inconsistent data, fixing some basic requirements, and provide two distinct sound and complete axiomatics for such semantics, LFI1 and LFI2, as well as their first-order extensions, LFI1* and LFI2*, depending on which additional requirements are considered. These formal systems are examples of what we dub Logics of Formal Inconsistency (LFI) and form part of a much larger family of similar logics. We also show that there are translations from classical and paraconsistent first-order logics into LFI1* and LFI2*, and back. Hence, despite their status as subsystems of classical logic, LFI1* and LFI2* can codify any classical or paraconsistent reasoning

    Pivotal and Pivotal-discriminative Consequence Relations

    No full text
    In the present paper, we investigate consequence relations that are both paraconsistent and plausible (but still monotonic). More precisely, we put the focus on pivotal consequence relations, i.e. those relations that can be defined by a pivot (in the style of e.g. D.~Makinson). A pivot is a fixed subset of valuations which are considered to be the important ones in the absolute sense. We worked with a general notion of valuation that covers e.g. the classical valuations as well as certain kinds of many-valued valuations. In the many-valued cases, pivotal consequence relations are paraconsistant (in addition to be plausible), i.e. they are capable of drawing reasonable conclusions which contain contradictions. We will provide in our general framework syntactic characterizations of several families of pivotal relations. In addition, we will provide, again in our general framework, characterizations of several families of pivotal discriminative consequence relations. The latter are defined exactly as the plain version, but contradictory conclusions are rejected. We will also answer negatively a representation problem that was left open by Makinson. Finally, we will put in evidence a connexion with X-logics from Forget, Risch, and Siegel. The motivations and the framework of the present paper are very close to those of a previous paper of the author which is about preferential consequence relations

    MetTeL: A Generic Tableau Prover.

    Get PDF
    corecore