5,348 research outputs found

    Distributionally Robust Optimization for Sequential Decision Making

    Full text link
    The distributionally robust Markov Decision Process (MDP) approach asks for a distributionally robust policy that achieves the maximal expected total reward under the most adversarial distribution of uncertain parameters. In this paper, we study distributionally robust MDPs where ambiguity sets for the uncertain parameters are of a format that can easily incorporate in its description the uncertainty's generalized moment as well as statistical distance information. In this way, we generalize existing works on distributionally robust MDP with generalized-moment-based and statistical-distance-based ambiguity sets to incorporate information from the former class such as moments and dispersions to the latter class that critically depends on empirical observations of the uncertain parameters. We show that, under this format of ambiguity sets, the resulting distributionally robust MDP remains tractable under mild technical conditions. To be more specific, a distributionally robust policy can be constructed by solving a sequence of one-stage convex optimization subproblems

    The effect of expected income on individual migration decisions

    Get PDF
    economic models;migration;decision making;income distribution

    Risk-Aware Wasserstein Distributionally Robust Control of Vessels in Natural Waterways

    Full text link
    In the realm of maritime transportation, autonomous vessel navigation in natural inland waterways faces persistent challenges due to unpredictable natural factors. Existing scheduling algorithms fall short in handling these uncertainties, compromising both safety and efficiency. Moreover, these algorithms are primarily designed for non-autonomous vessels, leading to labor-intensive operations vulnerable to human error. To address these issues, this study proposes a risk-aware motion control approach for vessels that accounts for the dynamic and uncertain nature of tide islands in a distributionally robust manner. Specifically, a model predictive control method is employed to follow the reference trajectory in the time-space map while incorporating a risk constraint to prevent grounding accidents. To address uncertainties in tide islands, a novel modeling technique represents them as stochastic polytopes. Additionally, potential inaccuracies in waterway depth are addressed through a risk constraint that considers the worst-case uncertainty distribution within a Wasserstein ambiguity set around the empirical distribution. Using sensor data collected in the Guadalquivir River, we empirically demonstrate the performance of the proposed method through simulations on a vessel. As a result, the vessel successfully navigates the waterway while avoiding grounding accidents, even with a limited dataset of observations. This stands in contrast to existing non-robust controllers, highlighting the robustness and practical applicability of the proposed approach

    ํ•™์Šต ๊ธฐ๋ฐ˜ ์ž์œจ์‹œ์Šคํ…œ์˜ ๋ฆฌ์Šคํฌ๋ฅผ ๊ณ ๋ คํ•˜๋Š” ๋ถ„ํฌ์  ๊ฐ•์ธ ์ตœ์ ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์–‘์ธ์ˆœ.In this thesis, a risk-aware motion control scheme is considered for autonomous systems to avoid randomly moving obstacles when the true probability distribution of uncertainty is unknown. We propose a novel model predictive control (MPC) method for motion planning and decision-making that systematically adjusts the safety and conservativeness in an environment with randomly moving obstacles. The key component is the Conditional Value-at-Risk (CVaR), employed to limit the safety risk in the MPC problem. Having the empirical distribution obtained using a limited amount of sample data, Sample Average Approximation (SAA) is applied to compute the safety risk. Furthermore, we propose a method, which limits the risk of unsafety even when the true distribution of the obstacles movements deviates, within an ambiguity set, from the empirical one. By choosing the ambiguity set as a statistical ball with its radius measured by the Wasserstein metric, we achieve a probabilistic guarantee of the out-of-sample risk, evaluated using new sample data generated independently of the training data. A set of reformulations are applied on both SAA-based MPC (SAA-MPC) and Wasserstein Distributionally Robust MPC (DR-MPC) to make them tractable. In addition, we combine the DR-MPC method with Gaussian Process (GP) to predict the future motion of the obstacles from past observations of the environment. The performance of the proposed methods is demonstrated and analyzed through simulation studies using a nonlinear vehicle model and a linearized quadrotor model.๋ณธ ์—ฐ๊ตฌ์—์„œ ์ž์œจ ์‹œ์Šคํ…œ์ด ์•Œ๋ ค์ง€์ง€ ์•Š์€ ํ™•๋ฅ  ๋ถ„ํฌ๋กœ ๋žœ๋คํ•˜๊ฒŒ ์›€์ง์ด๋Š” ์žฅ์• ๋ฌผ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•œ ์œ„ํ—˜ ์ธ์‹์„ ๊ณ ๋ คํ•˜๋Š” ๋ชจ์…˜ ์ œ์–ด ๊ธฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์•ˆ์ „์„ฑ๊ณผ ๋ณด์ˆ˜์„ฑ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” ์ƒˆ๋กœ์šด Model Predictive Control (MPC) ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๋ฐฉ๋ฒ™์˜ ํ•ต์‹ฌ ์š”์†Œ๋Š” MPC ๋ฌธ์ œ์˜ ์•ˆ์ „์„ฑ ๋ฆฌ์Šคํฌ๋ฅผ ์ œํ•œํ•˜๋Š” Conditional Value-at-Risk (CVaR)๋ผ๋Š” ๋ฆฌ์Šคํฌ ์ฒ™๋„์ด๋‹ค. ์•ˆ์ „์„ฑ ๋ฆฌ์Šคํฌ๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ์ œํ•œ๋œ ์–‘์˜ ํ‘œ๋ณธ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์–ป์–ด์ง„ ๊ฒฝํ—˜์  ๋ถ„ํฌ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” Sample Average Approximation (SAA)์„ ์ ์šฉํ•œ๋‹ค. ๋˜ํ•œ, ๊ฒฝํ—˜์  ๋ถ„ํฌ๋กœ๋ถ€ํ„ฐ ์‹ค์ œ ๋ถ„ํฌ๊ฐ€ Ambiguity Set๋ผ๋Š” ์ง‘ํ•ฉ ๋‚ด์—์„œ ๋ฒ—์–ด๋‚˜๋„ ๋ฆฌ์Šคํฌ๋ฅผ ์ œํ•œํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. Ambiguity Set๋ฅผ Wasserstein ๊ฑฐ๋ฆฌ๋กœ ์ธก์ •๋œ ๋ฐ˜์ง€๋ฆ„์„ ๊ฐ€์ง„ ํ†ต๊ณ„์  ๊ณต์œผ๋กœ ์„ ํƒํ•จ์œผ๋กœ์จ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์™€ ๋…๋ฆฝ์ ์œผ๋กœ ์ƒ์„ฑ๋œ ์ƒˆ๋กœ์šด ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ‰๊ฐ€ํ•œ out-of-sample risk์— ๋Œ€ํ•œ ํ™•๋ฅ ์  ๋ณด์žฅ์„ ๋‹ฌ์„ฑํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ SAA๊ธฐ๋ฐ˜ MPC (SAA-MPC)์™€ Wasserstein Distributionally Robust MPC (DR-MPC)๋ฅผ ์—ฌ๋Ÿฌ ๊ณผ์ •์„ ํ†ตํ•˜์—ฌ ๋‹ค๋ฃจ๊ธฐ ์‰ฌ์šด ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ์žฌํŽธ์„ฑํ•œ๋‹ค. ๋˜ํ•œ, ํ™˜๊ฒฝ์˜ ๊ณผ๊ฑฐ ๊ด€์ธก์œผ๋กœ๋ถ€ํ„ฐ ์žฅ์• ๋ฌผ์˜ ๋ฏธ๋ž˜ ์›€์ง์ž„์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด Distributionally Robust MPC ๋ฐฉ๋ฒ•์„ Gaussian Process (GP)์™€ ๊ฒฐํ•ฉํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋˜๋Š” ๊ธฐ๋ฒ•๋“ค์˜ ์„ฑ๋Šฅ์„ ๋น„์„ ํ˜• ์ž๋™์ฐจ ๋ชจ๋ธ๊ณผ ์„ ํ˜•ํ™”๋œ ์ฟผ๋“œ๋กœํ„ฐ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ ๋ถ„์„ํ•œ๋‹ค.1 BACKGROUND AND OBJECTIVES 1 1.1 Motivation and Objectives 1 1.2 Research Contributions 2 1.3 Thesis Organization 3 2 RISK-AWARE MOTION PLANNING AND CONTROL USING CVAR-CONSTRAINED OPTIMIZATION 5 2.1 Introduction 5 2.2 System and Obstacle Models 8 2.3 CVaR-constrained Motion Planning and Control 10 2.3.1 Reference Trajectory Planning 10 2.3.2 Safety Risk 11 2.3.3 Risk-Constrained Model Predictive Control 13 2.3.4 Linearly Constrained Mixed Integer Convex Program 18 2.4 Numerical Experiments 20 2.4.1 Effect of Confidence Level 21 2.4.2 Effect of Sample Size 23 2.5 Conclusions 24 3 WASSERSTEIN DISTRIBUTIONALLY ROBUST MPC 28 3.1 Introduction 28 3.2 System and Obstacle Models 31 3.3 Wasserstein Distributionally Robust MPC 33 3.3.1 Distance to the Safe Region 36 3.3.2 Reformulation of Distributionally Robust Risk Constraint 38 3.3.3 Reformulation of the Wasserstein DR-MPC Problem 43 3.4 Out-of-Sample Performance Guarantee 45 3.5 Numerical Experiments 47 3.5.1 Nonlinear Car-Like Vehicle Model 48 3.5.2 Linearized Quadrotor Model 53 3.6 Conclusions 57 4 LEARNING-BASED DISTRIBUTIONALLY ROBUST MPC 58 4.1 Introduction 58 4.2 Learning the Movement of Obstacles Using Gaussian Processes 60 4.2.1 Obstacle Model 60 4.2.2 Gaussian Process Regression 61 4.2.3 Prediction of the Obstacle's Motion 63 4.3 Gaussian Process based Wasserstein DR-MPC 65 4.4 Numerical Experiments 70 4.5 Conclusions 74 5 CONCLUSIONS AND FUTURE WORK 75 Abstract (In Korean) 87Maste
    • โ€ฆ
    corecore