11,730 research outputs found

    Infinite games played on finite graphs

    Get PDF
    AbstractThe concept of an infinite game played on a finite graph is perhaps novel in the context of an rather extensive recent literature in which infinite games are generally played on an infinite game tree. We claim two advantages for our model, which is admittedly more restrictive. First, our games have a more apparent resemblance to ordinary parlor games in spite of their infinite duration. Second, by distinguishing those nodes of the graph that determine the winning and losing of the game (winning-condition nodes), we are able to offer a complexity analysis that is useful in computer science applications

    Positional Determinacy of Games with Infinitely Many Priorities

    Get PDF
    We study two-player games of infinite duration that are played on finite or infinite game graphs. A winning strategy for such a game is positional if it only depends on the current position, and not on the history of the play. A game is positionally determined if, from each position, one of the two players has a positional winning strategy. The theory of such games is well studied for winning conditions that are defined in terms of a mapping that assigns to each position a priority from a finite set. Specifically, in Muller games the winner of a play is determined by the set of those priorities that have been seen infinitely often; an important special case are parity games where the least (or greatest) priority occurring infinitely often determines the winner. It is well-known that parity games are positionally determined whereas Muller games are determined via finite-memory strategies. In this paper, we extend this theory to the case of games with infinitely many priorities. Such games arise in several application areas, for instance in pushdown games with winning conditions depending on stack contents. For parity games there are several generalisations to the case of infinitely many priorities. While max-parity games over omega or min-parity games over larger ordinals than omega require strategies with infinite memory, we can prove that min-parity games with priorities in omega are positionally determined. Indeed, it turns out that the min-parity condition over omega is the only infinitary Muller condition that guarantees positional determinacy on all game graphs

    Optimally Resilient Strategies in Pushdown Safety Games

    Get PDF
    Infinite-duration games with disturbances extend the classical framework of infinite-duration games, which captures the reactive synthesis problem, with a discrete measure of resilience against non-antagonistic external influence. This concerns events where the observed system behavior differs from the intended one prescribed by the controller. For games played on finite arenas it is known that computing optimally resilient strategies only incurs a polynomial overhead over solving classical games. This paper studies safety games with disturbances played on infinite arenas induced by pushdown systems. We show how to compute optimally resilient strategies in triply-exponential time. For the subclass of safety games played on one-counter configuration graphs, we show that determining the degree of resilience of the initial configuration is PSPACE-complete and that optimally resilient strategies can be computed in doubly-exponential time

    Parity and Streett Games with Costs

    Get PDF
    We consider two-player games played on finite graphs equipped with costs on edges and introduce two winning conditions, cost-parity and cost-Streett, which require bounds on the cost between requests and their responses. Both conditions generalize the corresponding classical omega-regular conditions and the corresponding finitary conditions. For parity games with costs we show that the first player has positional winning strategies and that determining the winner lies in NP and coNP. For Streett games with costs we show that the first player has finite-state winning strategies and that determining the winner is EXPTIME-complete. The second player might need infinite memory in both games. Both types of games with costs can be solved by solving linearly many instances of their classical variants.Comment: A preliminary version of this work appeared in FSTTCS 2012 under the name "Cost-parity and Cost-Streett Games". The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements 259454 (GALE) and 239850 (SOSNA

    Model-checking Quantitative Alternating-time Temporal Logic on One-counter Game Models

    Full text link
    We consider quantitative extensions of the alternating-time temporal logics ATL/ATLs called quantitative alternating-time temporal logics (QATL/QATLs) in which the value of a counter can be compared to constants using equality, inequality and modulo constraints. We interpret these logics in one-counter game models which are infinite duration games played on finite control graphs where each transition can increase or decrease the value of an unbounded counter. That is, the state-space of these games are, generally, infinite. We consider the model-checking problem of the logics QATL and QATLs on one-counter game models with VASS semantics for which we develop algorithms and provide matching lower bounds. Our algorithms are based on reductions of the model-checking problems to model-checking games. This approach makes it quite simple for us to deal with extensions of the logical languages as well as the infinite state spaces. The framework generalizes on one hand qualitative problems such as ATL/ATLs model-checking of finite-state systems, model-checking of the branching-time temporal logics CTL and CTLs on one-counter processes and the realizability problem of LTL specifications. On the other hand the model-checking problem for QATL/QATLs generalizes quantitative problems such as the fixed-initial credit problem for energy games (in the case of QATL) and energy parity games (in the case of QATLs). Our results are positive as we show that the generalizations are not too costly with respect to complexity. As a byproduct we obtain new results on the complexity of model-checking CTLs in one-counter processes and show that deciding the winner in one-counter games with LTL objectives is 2ExpSpace-complete.Comment: 22 pages, 12 figure

    Optimally Resilient Strategies in Pushdown Safety Games

    Get PDF
    Infinite-duration games with disturbances extend the classical framework of infinite-duration games, which captures the reactive synthesis problem, with a discrete measure of resilience against non-antagonistic disturbances, i.e., unmodeled situations in which the actual controller action differs from the intended one. For games played on finite arenas it is known that computing optimally resilient strategies only incurs a polynomial overhead over solving classical games. This paper studies safety games with disturbances played on infinite arenas induced by pushdown systems. We show how to compute optimally resilient strategies in triply-exponential time. For the subclass of safety games played on one-counter configuration graphs, we show that determining the degree of resilience of the initial configuration is PSPACE-complete and that optimally resilient strategies can be computed in doubly-exponential time

    Concurrent Games and Semi-Random Determinacy

    Get PDF
    Consider concurrent, infinite duration, two-player win/lose games played on graphs. If the winning condition satisfies some simple requirement, the existence of Player 1 winning (finite-memory) strategies is equivalent to the existence of winning (finite-memory) strategies in finitely many derived one-player games. Several classical winning conditions satisfy this simple requirement. Under an additional requirement on the winning condition, the non-existence of Player 1 winning strategies from all vertices is equivalent to the existence of Player 2 stochastic strategies almost-sure winning from all vertices. Only few classical winning conditions satisfy this additional requirement, but a fairness variant of omega-regular languages does

    Subgame-perfect Equilibria in Mean-payoff Games

    Full text link
    In this paper, we provide an effective characterization of all the subgame-perfect equilibria in infinite duration games played on finite graphs with mean-payoff objectives. To this end, we introduce the notion of requirement and the notion of negotiation function. We establish that the set of plays that are supported by SPEs are exactly those that are consistent with the least fixed point of the negotiation function. Finally, we show that the negotiation function is piecewise linear and can be analyzed using the linear algebraic tool box
    • …
    corecore