11,148 research outputs found

    Locational wireless and social media-based surveillance

    Get PDF
    The number of smartphones and tablets as well as the volume of traffic generated by these devices has been growing constantly over the past decade and this growth is predicted to continue at an increasing rate over the next five years. Numerous native features built into contemporary smart devices enable highly accurate digital fingerprinting techniques. Furthermore, software developers have been taking advantage of locational capabilities of these devices by building applications and social media services that enable convenient sharing of information tied to geographical locations. Mass online sharing resulted in a large volume of locational and personal data being publicly available for extraction. A number of researchers have used this opportunity to design and build tools for a variety of uses – both respectable and nefarious. Furthermore, due to the peculiarities of the IEEE 802.11 specification, wireless-enabled smart devices disclose a number of attributes, which can be observed via passive monitoring. These attributes coupled with the information that can be extracted using social media APIs present an opportunity for research into locational surveillance, device fingerprinting and device user identification techniques. This paper presents an in-progress research study and details the findings to date

    Profiling user activities with minimal traffic traces

    Full text link
    Understanding user behavior is essential to personalize and enrich a user's online experience. While there are significant benefits to be accrued from the pursuit of personalized services based on a fine-grained behavioral analysis, care must be taken to address user privacy concerns. In this paper, we consider the use of web traces with truncated URLs - each URL is trimmed to only contain the web domain - for this purpose. While such truncation removes the fine-grained sensitive information, it also strips the data of many features that are crucial to the profiling of user activity. We show how to overcome the severe handicap of lack of crucial features for the purpose of filtering out the URLs representing a user activity from the noisy network traffic trace (including advertisement, spam, analytics, webscripts) with high accuracy. This activity profiling with truncated URLs enables the network operators to provide personalized services while mitigating privacy concerns by storing and sharing only truncated traffic traces. In order to offset the accuracy loss due to truncation, our statistical methodology leverages specialized features extracted from a group of consecutive URLs that represent a micro user action like web click, chat reply, etc., which we call bursts. These bursts, in turn, are detected by a novel algorithm which is based on our observed characteristics of the inter-arrival time of HTTP records. We present an extensive experimental evaluation on a real dataset of mobile web traces, consisting of more than 130 million records, representing the browsing activities of 10,000 users over a period of 30 days. Our results show that the proposed methodology achieves around 90% accuracy in segregating URLs representing user activities from non-representative URLs

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    No NAT'd User left Behind: Fingerprinting Users behind NAT from NetFlow Records alone

    Full text link
    It is generally recognized that the traffic generated by an individual connected to a network acts as his biometric signature. Several tools exploit this fact to fingerprint and monitor users. Often, though, these tools assume to access the entire traffic, including IP addresses and payloads. This is not feasible on the grounds that both performance and privacy would be negatively affected. In reality, most ISPs convert user traffic into NetFlow records for a concise representation that does not include, for instance, any payloads. More importantly, large and distributed networks are usually NAT'd, thus a few IP addresses may be associated to thousands of users. We devised a new fingerprinting framework that overcomes these hurdles. Our system is able to analyze a huge amount of network traffic represented as NetFlows, with the intent to track people. It does so by accurately inferring when users are connected to the network and which IP addresses they are using, even though thousands of users are hidden behind NAT. Our prototype implementation was deployed and tested within an existing large metropolitan WiFi network serving about 200,000 users, with an average load of more than 1,000 users simultaneously connected behind 2 NAT'd IP addresses only. Our solution turned out to be very effective, with an accuracy greater than 90%. We also devised new tools and refined existing ones that may be applied to other contexts related to NetFlow analysis

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data

    Full text link
    Many systems are partially stochastic in nature. We have derived data driven approaches for extracting stochastic state machines (Markov models) directly from observed data. This chapter provides an overview of our approach with numerous practical applications. We have used this approach for inferring shipping patterns, exploiting computer system side-channel information, and detecting botnet activities. For contrast, we include a related data-driven statistical inferencing approach that detects and localizes radiation sources.Comment: Accepted by 2017 International Symposium on Sensor Networks, Systems and Securit

    Organizational Chart Inference

    Full text link
    Nowadays, to facilitate the communication and cooperation among employees, a new family of online social networks has been adopted in many companies, which are called the "enterprise social networks" (ESNs). ESNs can provide employees with various professional services to help them deal with daily work issues. Meanwhile, employees in companies are usually organized into different hierarchies according to the relative ranks of their positions. The company internal management structure can be outlined with the organizational chart visually, which is normally confidential to the public out of the privacy and security concerns. In this paper, we want to study the IOC (Inference of Organizational Chart) problem to identify company internal organizational chart based on the heterogeneous online ESN launched in it. IOC is very challenging to address as, to guarantee smooth operations, the internal organizational charts of companies need to meet certain structural requirements (about its depth and width). To solve the IOC problem, a novel unsupervised method Create (ChArT REcovEr) is proposed in this paper, which consists of 3 steps: (1) social stratification of ESN users into different social classes, (2) supervision link inference from managers to subordinates, and (3) consecutive social classes matching to prune the redundant supervision links. Extensive experiments conducted on real-world online ESN dataset demonstrate that Create can perform very well in addressing the IOC problem.Comment: 10 pages, 9 figures, 1 table. The paper is accepted by KDD 201
    • …
    corecore