1,759 research outputs found

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Characterizing Information Diets of Social Media Users

    Full text link
    With the widespread adoption of social media sites like Twitter and Facebook, there has been a shift in the way information is produced and consumed. Earlier, the only producers of information were traditional news organizations, which broadcast the same carefully-edited information to all consumers over mass media channels. Whereas, now, in online social media, any user can be a producer of information, and every user selects which other users she connects to, thereby choosing the information she consumes. Moreover, the personalized recommendations that most social media sites provide also contribute towards the information consumed by individual users. In this work, we define a concept of information diet -- which is the topical distribution of a given set of information items (e.g., tweets) -- to characterize the information produced and consumed by various types of users in the popular Twitter social media. At a high level, we find that (i) popular users mostly produce very specialized diets focusing on only a few topics; in fact, news organizations (e.g., NYTimes) produce much more focused diets on social media as compared to their mass media diets, (ii) most users' consumption diets are primarily focused towards one or two topics of their interest, and (iii) the personalized recommendations provided by Twitter help to mitigate some of the topical imbalances in the users' consumption diets, by adding information on diverse topics apart from the users' primary topics of interest.Comment: In Proceeding of International AAAI Conference on Web and Social Media (ICWSM), Oxford, UK, May 201

    Creating Full Individual-level Location Timelines from Sparse Social Media Data

    Full text link
    In many domain applications, a continuous timeline of human locations is critical; for example for understanding possible locations where a disease may spread, or the flow of traffic. While data sources such as GPS trackers or Call Data Records are temporally-rich, they are expensive, often not publicly available or garnered only in select locations, restricting their wide use. Conversely, geo-located social media data are publicly and freely available, but present challenges especially for full timeline inference due to their sparse nature. We propose a stochastic framework, Intermediate Location Computing (ILC) which uses prior knowledge about human mobility patterns to predict every missing location from an individual's social media timeline. We compare ILC with a state-of-the-art RNN baseline as well as methods that are optimized for next-location prediction only. For three major cities, ILC predicts the top 1 location for all missing locations in a timeline, at 1 and 2-hour resolution, with up to 77.2% accuracy (up to 6% better accuracy than all compared methods). Specifically, ILC also outperforms the RNN in settings of low data; both cases of very small number of users (under 50), as well as settings with more users, but with sparser timelines. In general, the RNN model needs a higher number of users to achieve the same performance as ILC. Overall, this work illustrates the tradeoff between prior knowledge of heuristics and more data, for an important societal problem of filling in entire timelines using freely available, but sparse social media data.Comment: 10 pages, 8 figures, 2 table

    #greysanatomy vs. #yankees: Demographics and Hashtag Use on Twitter

    Full text link
    Demographics, in particular, gender, age, and race, are a key predictor of human behavior. Despite the significant effect that demographics plays, most scientific studies using online social media do not consider this factor, mainly due to the lack of such information. In this work, we use state-of-the-art face analysis software to infer gender, age, and race from profile images of 350K Twitter users from New York. For the period from November 1, 2014 to October 31, 2015, we study which hashtags are used by different demographic groups. Though we find considerable overlap for the most popular hashtags, there are also many group-specific hashtags.Comment: This is a preprint of an article appearing at ICWSM 201

    What You Like: Generating Explainable Topical Recommendations for Twitter Using Social Annotations

    Full text link
    With over 500 million tweets posted per day, in Twitter, it is difficult for Twitter users to discover interesting content from the deluge of uninteresting posts. In this work, we present a novel, explainable, topical recommendation system, that utilizes social annotations, to help Twitter users discover tweets, on topics of their interest. A major challenge in using traditional rating dependent recommendation systems, like collaborative filtering and content based systems, in high volume social networks is that, due to attention scarcity most items do not get any ratings. Additionally, the fact that most Twitter users are passive consumers, with 44% users never tweeting, makes it very difficult to use user ratings for generating recommendations. Further, a key challenge in developing recommendation systems is that in many cases users reject relevant recommendations if they are totally unfamiliar with the recommended item. Providing a suitable explanation, for why the item is recommended, significantly improves the acceptability of recommendation. By virtue of being a topical recommendation system our method is able to present simple topical explanations for the generated recommendations. Comparisons with state-of-the-art matrix factorization based collaborative filtering, content based and social recommendations demonstrate the efficacy of the proposed approach
    • …
    corecore