725 research outputs found

    Gene regulatory networks modelling using a dynamic evolutionary hybrid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inference of gene regulatory networks is a key goal in the quest for understanding fundamental cellular processes and revealing underlying relations among genes. With the availability of gene expression data, computational methods aiming at regulatory networks reconstruction are facing challenges posed by the data's high dimensionality, temporal dynamics or measurement noise. We propose an approach based on a novel multi-layer evolutionary trained neuro-fuzzy recurrent network (ENFRN) that is able to select potential regulators of target genes and describe their regulation type.</p> <p>Results</p> <p>The recurrent, self-organizing structure and evolutionary training of our network yield an optimized pool of regulatory relations, while its fuzzy nature avoids noise-related problems. Furthermore, we are able to assign scores for each regulation, highlighting the confidence in the retrieved relations. The approach was tested by applying it to several benchmark datasets of yeast, managing to acquire biologically validated relations among genes.</p> <p>Conclusions</p> <p>The results demonstrate the effectiveness of the ENFRN in retrieving biologically valid regulatory relations and providing meaningful insights for better understanding the dynamics of gene regulatory networks.</p> <p>The algorithms and methods described in this paper have been implemented in a Matlab toolbox and are available from: <url>http://bioserver-1.bioacademy.gr/DataRepository/Project_ENFRN_GRN/</url>.</p

    Inference of Genetic Regulatory Networks with Recurrent Neural Network Models using Particle Swarm Optimization

    Get PDF
    Genetic regulatory network inference is critically important for revealing fundamental cellular processes, investigating gene functions, and understanding their relations. The availability of time series gene expression data makes it possible to investigate the gene activities of whole genomes, rather than those of only a pair of genes or among several genes. However, current computational methods do not sufficiently consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO) approach to infer genetic regulatory networks from time series gene expression data. Under this framework, gene interaction is explained through a connection weight matrix. Based on the fact that the measured time points are limited and the assumption that the genetic networks are usually sparsely connected, we present a PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine the network parameters. Our approach has been applied to both synthetic and real data sets. The results demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of the gene expression time series and revealing potential regulatory interactions between genes

    A survey of models for inference of gene regulatory networks

    Get PDF
    In this article, I present the biological backgrounds of microarray, ChIP-chip and ChIPSeq technologies and the application of computational methods in reverse engineering of gene&nbsp;regulatory networks (GRNs). The most commonly used GRNs models based on Boolean networks,&nbsp;Bayesian networks, relevance networks, differential and difference equations are described. A novel&nbsp;model for integration of prior biological knowledge in the GRNs inference is presented, too. The&nbsp;advantages and disadvantages of the described models are compared. The GRNs validation criteria&nbsp;are depicted. Current trends and further directions for GRNs inference using prior knowledge are&nbsp;given at the end of the paper

    A survey of models for inference of gene regulatory networks

    Get PDF
    In this article, I present the biological backgrounds of microarray, ChIP-chip and ChIPSeq technologies and the application of computational methods in reverse engineering of gene&nbsp;regulatory networks (GRNs). The most commonly used GRNs models based on Boolean networks,&nbsp;Bayesian networks, relevance networks, differential and difference equations are described. A novel&nbsp;model for integration of prior biological knowledge in the GRNs inference is presented, too. The&nbsp;advantages and disadvantages of the described models are compared. The GRNs validation criteria&nbsp;are depicted. Current trends and further directions for GRNs inference using prior knowledge are&nbsp;given at the end of the paper

    Reverse Engineering of Biological Systems

    Get PDF
    Gene regulatory network (GRN) consists of a set of genes and regulatory relationships between the genes. As outputs of the GRN, gene expression data contain important information that can be used to reconstruct the GRN to a certain degree. However, the reverse engineer of GRNs from gene expression data is a challenging problem in systems biology. Conventional methods fail in inferring GRNs from gene expression data because of the relative less number of observations compared with the large number of the genes. The inherent noises in the data make the inference accuracy relatively low and the combinatorial explosion nature of the problem makes the inference task extremely difficult. This study aims at reconstructing the GRNs from time-course gene expression data based on GRN models using system identification and parameter estimation methods. The main content consists of three parts: (1) a review of the methods for reverse engineering of GRNs, (2) reverse engineering of GRNs based on linear models and (3) reverse engineering of GRNs based on a nonlinear model, specifically S-systems. In the first part, after the necessary background and challenges of the problem are introduced, various methods for the inference of GRNs are comprehensively reviewed from two aspects: models and inference algorithms. The advantages and disadvantages of each method are discussed. The second part focus on inferring GRNs from time-course gene expression data based on linear models. First, the statistical properties of two sparse penalties, adaptive LASSO and SCAD, with an autoregressive model are studied. It shows that the proposed methods using these two penalties can asymptotically reconstruct the underlying networks. This provides a solid foundation for these methods and their extensions. Second, the integration of multiple datasets should be able to improve the accuracy of the GRN inference. A novel method, Huber group LASSO, is developed to infer GRNs from multiple time-course data, which is also robust to large noises and outliers that the data may contain. An efficient algorithm is also developed and its convergence analysis is provided. The third part can be further divided into two phases: estimating the parameters of S-systems with system structure known and inferring the S-systems without knowing the system structure. Two methods, alternating weighted least squares (AWLS) and auxiliary function guided coordinate descent (AFGCD), have been developed to estimate the parameters of S-systems from time-course data. AWLS takes advantage of the special structure of S-systems and significantly outperforms one existing method, alternating regression (AR). AFGCD uses the auxiliary function and coordinate descent techniques to get the smart and efficient iteration formula and its convergence is theoretically guaranteed. Without knowing the system structure, taking advantage of the special structure of the S-system model, a novel method, pruning separable parameter estimation algorithm (PSPEA) is developed to locally infer the S-systems. PSPEA is then combined with continuous genetic algorithm (CGA) to form a hybrid algorithm which can globally reconstruct the S-systems

    Reverse engineering of genetic networks with time delayed recurrent neural networks and clustering techniques

    Get PDF
    In the iterative process of experimentally probing biological networks and computationally inferring models for the networks, fast, accurate and flexible computational frameworks are needed for modeling and reverse engineering biological networks. In this dissertation, I propose a novel model to simulate gene regulatory networks using a specific type of time delayed recurrent neural networks. Also, I introduce a parameter clustering method to select groups of parameter sets from the simulations representing biologically reasonable networks. Additionally, a general purpose adaptive function is used here to decrease and study the connectivity of small gene regulatory networks modules. In this dissertation, the performance of this novel model is shown to simulate the dynamics and to infer the topology of gene regulatory networks derived from synthetic and experimental time series gene expression data. Here, I assess the quality of the inferred networks by the use of graph edit distance measurements in comparison to the synthetic and experimental benchmarks. Additionally, I compare between edition costs of the inferred networks obtained with the time delay recurrent networks and other previously described reverse engineering methods based on continuous time recurrent neural and dynamic Bayesian networks. Furthermore, I address questions of network connectivity and correlation between data fitting and inference power by simulating common experimental limitations of the reverse engineering process as incomplete and highly noisy data. The novel specific type of time delay recurrent neural networks model in combination with parameter clustering substantially improves the inference power of reverse engineered networks. Additionally, some suggestions for future improvements are discussed, particularly under the data driven perspective as the solution for modeling complex biological systems
    corecore