2,395 research outputs found

    Inferring the function of genes from synthetic lethal mutations

    Get PDF
    Techniques for detecting synthetic lethal mutations in double gene deletion experiments are emerging as powerful tool for analysing genes in parallel or overlapping pathways with a shared function. This paper introduces a logic-based approach that uses synthetic lethal mutations for mapping genes of unknown function to enzymes in a known metabolic network. We show how such mappings can be automatically computed by a logical learning system called eXtended Hybrid Abductive Inductive Learning (XHAIL)

    Computational approaches to identify genetic interactions for cancer therapeutics

    Get PDF
    The development of improved cancer therapies is frequently cited as an urgent unmet medical need. Here we describe how genetic interactions are being therapeutically exploited to identify novel targeted treatments for cancer. We discuss the current methodologies that use ‘omics data to identify genetic interactions, in particular focusing on synthetic sickness lethality (SSL) and synthetic dosage lethality (SDL). We describe the experimen- tal and computational approaches undertaken both in humans and model organisms to identify these interac- tions. Finally we discuss some of the identified targets with licensed drugs, inhibitors in clinical trials or with compounds under development

    Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response.

    Get PDF
    BackgroundA pair of genes is defined as synthetically lethal if defects on both cause the death of the cell but a defect in only one of the two is compatible with cell viability. Ideally, if A and B are two synthetic lethal genes, inhibiting B should kill cancer cells with a defect on A, and should have no effects on normal cells. Thus, synthetic lethality can be exploited for highly selective cancer therapies, which need to exploit differences between normal and cancer cells.ResultsIn this paper, we present a new method for predicting synthetic lethal (SL) gene pairs. As neighbouring genes in the genome have highly correlated profiles of copy number variations (CNAs), our method clusters proximal genes with a similar CNA profile, then predicts mutually exclusive group pairs, and finally identifies the SL gene pairs within each group pairs. For mutual-exclusion testing we use a graph-based method which takes into account the mutation frequencies of different subjects and genes. We use two different methods for selecting the pair of SL genes; the first is based on the gene essentiality measured in various conditions by means of the "Gene Activity Ranking Profile" GARP score; the second leverages the annotations of gene to biological pathways.ConclusionsThis method is unique among current SL prediction approaches, it reduces false-positive SL predictions compared to previous methods, and it allows establishing explicit collateral lethality relationship of gene pairs within mutually exclusive group pairs

    Understanding and predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using domain genetic interactions

    Get PDF
    Genetic interactions have been widely used to define functional relationships between proteins and pathways. In this study, we demonstrated that yeast synthetic lethal genetic interactions can be explained by the genetic interactions between domains of those proteins. The domain genetic interactions rarely overlap with the domain physical interactions from iPfam database and provide a complementary view about domain relationships. Moreover, we found that domains in multidomain yeast proteins contribute to their genetic interactions differently. The domain genetic interactions help more precisely define the function related to the synthetic lethal genetic interactions, and then help understand how domains contribute to different functionalities of multidomain proteins. Using the probabilities of domain genetic interactions, we were able to predict novel yeast synthetic lethal genetic interactions. Furthermore, we had also identified novel compensatory pathways from the predicted synthetic lethal genetic interactions. Our study significantly improved the understanding of yeast mulitdomain proteins, the synthetic lethal genetic interactions and the functional relationships between proteins and pathways.Comment: 36 page, 4 figure
    corecore