395 research outputs found

    Enhancing Mobile App User Understanding and Marketing with Heterogeneous Crowdsourced Data: A Review

    Full text link
    Ā© 2013 IEEE. The mobile app market has been surging in recent years. It has some key differentiating characteristics which make it different from traditional markets. To enhance mobile app development and marketing, it is important to study the key research challenges such as app user profiling, usage pattern understanding, popularity prediction, requirement and feedback mining, and so on. This paper reviews CrowdApp, a research field that leverages heterogeneous crowdsourced data for mobile app user understanding and marketing. We first characterize the opportunities of the CrowdApp, and then present the key research challenges and state-of-the-art techniques to deal with these challenges. We further discuss the open issues and future trends of the CrowdApp. Finally, an evolvable app ecosystem architecture based on heterogeneous crowdsourced data is presented

    Identifying Hidden Visits from Sparse Call Detail Record Data

    Full text link
    Despite a large body of literature on trip inference using call detail record (CDR) data, a fundamental understanding of their limitations is lacking. In particular, because of the sparse nature of CDR data, users may travel to a location without being revealed in the data, which we refer to as a "hidden visit". The existence of hidden visits hinders our ability to extract reliable information about human mobility and travel behavior from CDR data. In this study, we propose a data fusion approach to obtain labeled data for statistical inference of hidden visits. In the absence of complementary data, this can be accomplished by extracting labeled observations from more granular cellular data access records, and extracting features from voice call and text messaging records. The proposed approach is demonstrated using a real-world CDR dataset of 3 million users from a large Chinese city. Logistic regression, support vector machine, random forest, and gradient boosting are used to infer whether a hidden visit exists during a displacement observed from CDR data. The test results show significant improvement over the naive no-hidden-visit rule, which is an implicit assumption adopted by most existing studies. Based on the proposed model, we estimate that over 10% of the displacements extracted from CDR data involve hidden visits. The proposed data fusion method offers a systematic statistical approach to inferring individual mobility patterns based on telecommunication records

    Automated Medical Device Display Reading Using Deep Learning Object Detection

    Full text link
    Telemedicine and mobile health applications, especially during the quarantine imposed by the covid-19 pandemic, led to an increase on the need of transferring health monitor readings from patients to specialists. Considering that most home medical devices use seven-segment displays, an automatic display reading algorithm should provide a more reliable tool for remote health care. This work proposes an end-to-end method for detection and reading seven-segment displays from medical devices based on deep learning object detection models. Two state of the art model families, EfficientDet and EfficientDet-lite, previously trained with the MS-COCO dataset, were fine-tuned on a dataset comprised by medical devices photos taken with mobile digital cameras, to simulate real case applications. Evaluation of the trained model show high efficiency, where all models achieved more than 98% of detection precision and more than 98% classification accuracy, with model EfficientDet-lite1 showing 100% detection precision and 100% correct digit classification for a test set of 104 images and 438 digits.Comment: 6 pages, 5 figure

    Towards Proactive Context-aware Computing and Systems

    Get PDF
    A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the usersā€™ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as ā€œProactive Context-aware Computingā€. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on usersā€™ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate usersā€™ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of usersā€™ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine usersā€™ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ā€˜Locusā€™, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of usersā€™ context include the activities that they are engaged in. To this end, we have developed ā€˜SenseMeā€™, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ā€˜SenseMeā€™ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to usersā€™ situations, we have developed ā€˜TellMeā€™ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of usersā€™ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict usersā€™ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying usersā€™ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing
    • ā€¦
    corecore