12,029 research outputs found

    Latent Self-Exciting Point Process Model for Spatial-Temporal Networks

    Full text link
    We propose a latent self-exciting point process model that describes geographically distributed interactions between pairs of entities. In contrast to most existing approaches that assume fully observable interactions, here we consider a scenario where certain interaction events lack information about participants. Instead, this information needs to be inferred from the available observations. We develop an efficient approximate algorithm based on variational expectation-maximization to infer unknown participants in an event given the location and the time of the event. We validate the model on synthetic as well as real-world data, and obtain very promising results on the identity-inference task. We also use our model to predict the timing and participants of future events, and demonstrate that it compares favorably with baseline approaches.Comment: 20 pages, 6 figures (v3); 11 pages, 6 figures (v2); previous version appeared in the 9th Bayesian Modeling Applications Workshop, UAI'1

    Network Model Selection for Task-Focused Attributed Network Inference

    Full text link
    Networks are models representing relationships between entities. Often these relationships are explicitly given, or we must learn a representation which generalizes and predicts observed behavior in underlying individual data (e.g. attributes or labels). Whether given or inferred, choosing the best representation affects subsequent tasks and questions on the network. This work focuses on model selection to evaluate network representations from data, focusing on fundamental predictive tasks on networks. We present a modular methodology using general, interpretable network models, task neighborhood functions found across domains, and several criteria for robust model selection. We demonstrate our methodology on three online user activity datasets and show that network model selection for the appropriate network task vs. an alternate task increases performance by an order of magnitude in our experiments

    Cultural Diffusion and Trends in Facebook Photographs

    Full text link
    Online social media is a social vehicle in which people share various moments of their lives with their friends, such as playing sports, cooking dinner or just taking a selfie for fun, via visual means, that is, photographs. Our study takes a closer look at the popular visual concepts illustrating various cultural lifestyles from aggregated, de-identified photographs. We perform analysis both at macroscopic and microscopic levels, to gain novel insights about global and local visual trends as well as the dynamics of interpersonal cultural exchange and diffusion among Facebook friends. We processed images by automatically classifying the visual content by a convolutional neural network (CNN). Through various statistical tests, we find that socially tied individuals more likely post images showing similar cultural lifestyles. To further identify the main cause of the observed social correlation, we use the Shuffle test and the Preference-based Matched Estimation (PME) test to distinguish the effects of influence and homophily. The results indicate that the visual content of each user's photographs are temporally, although not necessarily causally, correlated with the photographs of their friends, which may suggest the effect of influence. Our paper demonstrates that Facebook photographs exhibit diverse cultural lifestyles and preferences and that the social interaction mediated through the visual channel in social media can be an effective mechanism for cultural diffusion.Comment: 10 pages, To appear in ICWSM 2017 (Full Paper

    Inferring Population Preferences via Mixtures of Spatial Voting Models

    Full text link
    Understanding political phenomena requires measuring the political preferences of society. We introduce a model based on mixtures of spatial voting models that infers the underlying distribution of political preferences of voters with only voting records of the population and political positions of candidates in an election. Beyond offering a cost-effective alternative to surveys, this method projects the political preferences of voters and candidates into a shared latent preference space. This projection allows us to directly compare the preferences of the two groups, which is desirable for political science but difficult with traditional survey methods. After validating the aggregated-level inferences of this model against results of related work and on simple prediction tasks, we apply the model to better understand the phenomenon of political polarization in the Texas, New York, and Ohio electorates. Taken at face value, inferences drawn from our model indicate that the electorates in these states may be less bimodal than the distribution of candidates, but that the electorates are comparatively more extreme in their variance. We conclude with a discussion of limitations of our method and potential future directions for research.Comment: To be published in the 8th International Conference on Social Informatics (SocInfo) 201

    Chinese Internet AS-level Topology

    Full text link
    We present the first complete measurement of the Chinese Internet topology at the autonomous systems (AS) level based on traceroute data probed from servers of major ISPs in mainland China. We show that both the Chinese Internet AS graph and the global Internet AS graph can be accurately reproduced by the Positive-Feedback Preference (PFP) model with the same parameters. This result suggests that the Chinese Internet preserves well the topological characteristics of the global Internet. This is the first demonstration of the Internet's topological fractality, or self-similarity, performed at the level of topology evolution modeling.Comment: This paper is a preprint of a paper submitted to IEE Proceedings on Communications and is subject to Institution of Engineering and Technology Copyright. If accepted, the copy of record will be available at IET Digital Librar

    The interplay of microscopic and mesoscopic structure in complex networks

    Get PDF
    Not all nodes in a network are created equal. Differences and similarities exist at both individual node and group levels. Disentangling single node from group properties is crucial for network modeling and structural inference. Based on unbiased generative probabilistic exponential random graph models and employing distributive message passing techniques, we present an efficient algorithm that allows one to separate the contributions of individual nodes and groups of nodes to the network structure. This leads to improved detection accuracy of latent class structure in real world data sets compared to models that focus on group structure alone. Furthermore, the inclusion of hitherto neglected group specific effects in models used to assess the statistical significance of small subgraph (motif) distributions in networks may be sufficient to explain most of the observed statistics. We show the predictive power of such generative models in forecasting putative gene-disease associations in the Online Mendelian Inheritance in Man (OMIM) database. The approach is suitable for both directed and undirected uni-partite as well as for bipartite networks

    Sex differences in intimate relationships

    Get PDF
    Social networks have turned out to be of fundamental importance both for our understanding human sociality and for the design of digital communication technology. However, social networks are themselves based on dyadic relationships and we have little understanding of the dynamics of close relationships and how these change over time. Evolutionary theory suggests that, even in monogamous mating systems, the pattern of investment in close relationships should vary across the lifespan when post-weaning investment plays an important role in maximising fitness. Mobile phone data sets provide us with a unique window into the structure of relationships and the way these change across the lifespan. We here use data from a large national mobile phone dataset to demonstrate striking sex differences in the pattern in the gender-bias of preferred relationships that reflect the way the reproductive investment strategies of the two sexes change across the lifespan: these differences mainly reflect women's shifting patterns of investment in reproduction and parental care. These results suggest that human social strategies may have more complex dynamics than we have tended to assume and a life-history perspective may be crucial for understanding them.Comment: 5 pages, 3 figures, contains electronic supplementary materia

    Close relationships: A study of mobile communication records

    Full text link
    Mobile phone communication as digital service generates ever-increasing datasets of human communication actions, which in turn allow us to investigate the structure and evolution of social interactions and their networks. These datasets can be used to study the structuring of such egocentric networks with respect to the strength of the relationships by assuming direct dependence of the communication intensity on the strength of the social tie. Recently we have discovered that there are significant differences between the first and further "best friends" from the point of view of age and gender preferences. Here we introduce a control parameter pmaxp_{\rm max} based on the statistics of communication with the first and second "best friend" and use it to filter the data. We find that when pmaxp_{\rm max} is decreased the identification of the "best friend" becomes less ambiguous and the earlier observed effects get stronger, thus corroborating them.Comment: 11 pages, 7 figure
    • 

    corecore