411 research outputs found

    Inferring nucleosome positions with their histone mark annotation from ChIP data

    Get PDF
    MOTIVATION: The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. RESULTS: We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. AVAILABILITY: The software is available at http://epigen.molgen.mpg.de/nuchunter/. CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Nucleosome Positioning and Its Role in Gene Regulation in Yeast

    Get PDF
    Nucleosome, composed of a 147-bp segment of DNA helix wrapped around a histone protein octamer, serves as the basic unit of chromatin. Nucleosome positioning refers to the relative position of DNA double helix with respect to the histone octamer. The positioning has an important role in transcription, DNA replication and other DNA transactions since packing DNA into nucleosomes occludes the binding site of proteins. Moreover, the nucleosomes bear histone modifications thus having a profound effect in regulation. Nucleosome positioning and its roles are extensively studied in model organism yeast. In this chapter, nucleosome organization and its roles in gene regulation are reviewed. Typically, nucleosomes are depleted around transcription start sites (TSSs), resulting in a nucleosome-free region (NFR) that is flanked by two well-positioned H2A.Z-containing nucleosomes. The nucleosomes downstream of the TSS are equally spaced in a nucleosome array. DNA sequences, especially 10–11 bp periodicities of some specific dinucleotides, partly determine the nucleosome positioning. Nucleosome occupancy can be determined with high throughput sequencing techniques. Importantly, nucleosome positions are dynamic in different cell types and different environments. Histones depletions, histones mutations, heat shock and changes in carbon source will profoundly change nucleosome organization. In the yeast cells, upon mutating the histones, the nucleosomes change drastically at promoters and the highly expressed genes, such as ribosome genes, undergo more change. The changes of nucleosomes tightly associate the transcription initiation, elongation and termination. H2A.Z is contained in the +1 and −1 nucleosomes and thus in transcription. Chaperon Chz1 and elongation factor Spt16 function in H2A.Z deposition on chromatin. The chapter covers the basic concept of nucleosomes, nucleosome determinant, the techniques of mapping nucleosomes, nucleosome alteration upon stress and mutation, and Htz1 dynamics on chromatin

    Nucleosome positioning: resources and tools online

    Get PDF
    Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely, to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types and more than 40 computational tools for the analysis of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained at http://generegulation.info

    Identification of functional elements and regulatory circuits by Drosophila modENCODE

    Get PDF
    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation

    Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features.

    Get PDF
    Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors

    NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data

    Get PDF
    Background: Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. Results: Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Conclusions: The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed

    Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome

    Get PDF
    Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is an increasingly common experimental approach to generate genome-wide maps of histone modifications and to dissect the complexity of the epigenome. Here, we propose EpiCSeg: a novel algorithm that combines several histone modification maps for the segmentation and characterization of cell-type specific epigenomic landscapes. By using an accurate probabilistic model for the read counts, EpiCSeg provides a useful annotation for a considerably larger portion of the genome, shows a stronger association with validation data, and yields more consistent predictions across replicate experiments when compared to existing methods.The software is available at http://github.com/lamortenera/epicseg
    • …
    corecore