14,779 research outputs found

    Active Topology Inference using Network Coding

    Get PDF
    Our goal is to infer the topology of a network when (i) we can send probes between sources and receivers at the edge of the network and (ii) intermediate nodes can perform simple network coding operations, i.e., additions. Our key intuition is that network coding introduces topology-dependent correlation in the observations at the receivers, which can be exploited to infer the topology. For undirected tree topologies, we design hierarchical clustering algorithms, building on our prior work. For directed acyclic graphs (DAGs), first we decompose the topology into a number of two-source, two-receiver (2-by-2) subnetwork components and then we merge these components to reconstruct the topology. Our approach for DAGs builds on prior work on tomography, and improves upon it by employing network coding to accurately distinguish among all different 2-by-2 components. We evaluate our algorithms through simulation of a number of realistic topologies and compare them to active tomographic techniques without network coding. We also make connections between our approach and alternatives, including passive inference, traceroute, and packet marking

    A Network Coding Approach to Loss Tomography

    Get PDF
    Network tomography aims at inferring internal network characteristics based on measurements at the edge of the network. In loss tomography, in particular, the characteristic of interest is the loss rate of individual links and multicast and/or unicast end-to-end probes are typically used. Independently, recent advances in network coding have shown that there are advantages from allowing intermediate nodes to process and combine, in addition to just forward, packets. In this paper, we study the problem of loss tomography in networks with network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities, and we show that it improves several aspects of tomography including the identifiability of links, the trade-off between estimation accuracy and bandwidth efficiency, and the complexity of probe path selection. We discuss the cases of inferring link loss rates in a tree topology and in a general topology. In the latter case, the benefits of our approach are even more pronounced compared to standard techniques, but we also face novel challenges, such as dealing with cycles and multiple paths between sources and receivers. Overall, this work makes the connection between active network tomography and network coding

    ‘Unfair’ Discrimination in Two-sided Peering? Evidence from LINX

    Get PDF
    ‘Unfair’ Discrimination in Two-sided Peering? Evidence from LINX Abstract: Does asymmetry between Internet Providers affect the “fairness” of their interconnection contracts? While recent game theoretic literature provides contrasting answers to this question, there is a lack of empirical research. We introduce a novel dataset on micro-interconnection policies and provide an econometric analysis of the determinants of peering decisions amongst the Internet Service Providers interconnecting at the London Internet Exchange Point (LINX). Our key result shows that two different metrics, introduced to capture asymmetry, exert opposite effects. Asymmetry in “market size” enhances the quality of the link, while asymmetry in “network centrality” induces quality degradation, hence “unfairer” interconnection conditions
    • 

    corecore