1,317 research outputs found

    Introducing Preference-Based Argumentation to Inconsistent Ontological Knowledge Bases

    Get PDF
    International audienceHandling inconsistency is an inherent part of decision making in traditional agri-food chains – due to the various concerns involved. In order to explain the source of inconsistency and represent the existing conflicts in the ontological knowledge base, argumentation theory can be used. However, the current state of art methodology does not allow to take into account the level of significance of the knowledge expressed by the various ontological knowledge sources. We propose to use preferences in order to model those differences between formulas and evaluate our proposal practically by implementing it within the INRA platform and showing a use case using this formalism in a bread making decision support system

    Reasoning in inconsistent prioritized knowledge bases: an argumentative approach

    Get PDF
    A study of query answering in prioritized ontological knowledge bases (KBs) has received attention in recent years. While several semantics of query answering have been proposed and their complexity is rather well-understood, the problem of explaining inconsistency-tolerant query answers has paid less attention. Explaining query answers permits users to understand not only what is entailed or not entailed by an inconsistent DL-LiteR KBs in the presence of priority, but also why. We, therefore, concern with the use of argumentation frameworks to allow users to better understand explanation techniques of querying answers over inconsistent DL-LiteR KBs in the presence of priority. More specifically, we propose a new variant of Dung’s argumentation frameworks, which corresponds to a given inconsistent DL-LiteR KB. We clarify a close relation between preferred subtheories adopted in such prioritized DL-LiteR setting and acceptable semantics of the corresponding argumentation framework. The significant result paves the way for applying algorithms and proof theories to establish preferred subtheories inferences in prioritized DL-LiteR KBs

    Data, problems, heuristics and results in cognitive metaphor research

    Get PDF
    Cognitive metaphor research is characterised by the diversity of rival theories. Starting from this observation, the paper focuses on the problem of how the unity and diversity of cognitive theories of metaphor can be accounted for. The first part of the paper outlines a suitable metascientific approach which emerges as a modification of B. von Eckardt’s notion of research framework. In the second part, by the help of this approach, some aspects of the sophisticated relationship between Lakoff and Johnson’s, Glucksberg’s, and Gentner’s theories are discussed. The main finding is that the data, the problems, the heuristics and the hypotheses which have been partly shaped by the rivals contribute to the development of the particular theories to a considerable extent

    Rich preference-based argumentation frameworks

    Get PDF
    International audienceAn argumentation framework is seen as a directed graph whose nodes are arguments and arcs are attacks between the arguments. Acceptable sets of arguments, called extensions, are computed using a semantics. Existing semantics are solely based on the attacks and do not take into account other important criteria like the intrinsic strengths of arguments. The contribution of this paper is three fold. First, we study how preferences issued from differences in strengths of arguments can help in argumentation frameworks. We show that they play two distinct and complementary roles: (i) to repair the attack relation between arguments, (ii) to refine the evaluation of arguments. Despite the importance of both roles, only the first one is tackled in existing literature. In a second part of this paper, we start by showing that existing models that repair the attack relation with preferences do not perform well in certain situations and may return counter-intuitive results. We then propose a new abstract and general framework which treats properly both roles of preferences. The third part of this work is devoted to defining a bridge between the argumentation-based and the coherence-based approaches for handling inconsistency in knowledge bases, in particular when priorities between formulae are available. We focus on two well-known models, namely the preferred sub-theories introduced by Brewka and the demo-preferred sets defined by Cayrol, Royer and Saurel. For each of these models, we provide an instantiation of our abstract framework which is in full correspondence with it

    Formalisation and logical properties of the maximal ideal recursive semantics for weighted defeasible logic programming

    Get PDF
    Possibilistic defeasible logic programming (P-DeLP) is a logic programming framework which combines features from argumentation theory and logic programming, in which defeasible rules are attached with weights expressing their relative belief or preference strength. In P-DeLP,a conclusion succeeds if there exists an argument that entails the conclusion and this argument is found to be undefeated by a warrant procedure that systematically explores the universe of arguments in order to present an exhaustive synthesis of the relevant chains of pros and cons for the given conclusion. Recently, we have proposed a new warrant recursive semantics for P-DeLP, called Recursive P-DeLP (RP-DeLP for short), based on the claim that the acceptance of an argument should imply also the acceptance of all its sub-arguments which reflect the different premises on which the argument is based. This paper explores the relationship between the exhaustive dialectical analysis-based semantics of P-DeLP and the recursive-based semantics of RP-DeLP, and analyses a non-monotonic inference operator for RP-DeLP which models the expansion of a given program by adding new weighted facts associated with warranted conclusions. Given the recursive-based semantics of RP-DeLP, we have also implemented an argumentation framework for RP-DeLP that is able to compute not only the output of warranted and blocked conclusions, but also explain the reasons behind the status of each conclusion. We have developed this framework as a stand-alone application with a simple text-based input/output interface to be able to use it as part of other artificial intelligence systemsThis research was partially supported by the Spanish projects EdeTRI (TIN2012-39348-C02-01) and AT (CONSOLIDER- INGENIO 2010, CSD2007-00022)
    • …
    corecore