1,179 research outputs found

    Identification of functional cis-regulatory elements by sequential enrichment from a randomized synthetic DNA library

    Get PDF
    BACKGROUND: The identification of endogenous cis-regulatory DNA elements (CREs) responsive to endogenous and environmental cues is important for studying gene regulation and for biotechnological applications but is labor and time intensive. Alternatively, by taking a synthetic biology approach small specific DNA binding sites tailored to the needs of the scientist can be generated and rapidly identified. RESULTS: Here we report a novel approach to identify stimulus-responsive synthetic CREs (SynCREs) from an unbiased random synthetic element (SynE) library. Functional SynCREs were isolated by screening the SynE libray for elements mediating transcriptional activity in plant protoplasts. Responsive elements were chromatin immunoprecipitated by targeting the active Ser-5 phosphorylated RNA polymerase II CTD (Pol II ChIP). Using sequential enrichment, deep sequencing and a bioinformatics pipeline, candidate responsive SynCREs were identified within a pool of constitutively active DNA elements and further validated. These included bonafide biotic/abiotic stress-responsive motifs along with novel SynCREs. We tested several SynCREs in Arabidopsis and confirmed their response to biotic stimuli. CONCLUSIONS: Successful isolation of synthetic stress-responsive elements from our screen illustrates the power of the described methodology. This approach can be applied to any transfectable eukaryotic system since it exploits a universal feature of the eukaryotic Pol II

    Reverse engineering of drug induced DNA damage response signalling pathway reveals dual outcomes of ATM kinase inhibition

    Get PDF
    The DNA Damage Response (DDR) pathway represents a signalling mechanism that is activated in eukaryotic cells following DNA damage and comprises of proteins involved in DNA damage detection, DNA repair, cell cycle arrest and apoptosis. This pathway consists of an intricate network of signalling interactions driving the cellular ability to recognise DNA damage and recruit specialised proteins to take decisions between DNA repair or apoptosis. ATM and ATR are central components of the DDR pathway. The activities of these kinases are vital in DNA damage induced phosphorylational induction of DDR substrates. Here, firstly we have experimentally determined DDR signalling network surrounding the ATM/ATR pathway induced following double stranded DNA damage by monitoring and quantifying time dependent inductions of their phosphorylated forms and their key substrates. We next involved an automated inference of unsupervised predictive models of time series data to generate in silico (molecular) interaction maps. We characterized the complex signalling network through system analysis and gradual utilisation of small time series measurements of key substrates through a novel network inference algorithm. Furthermore, we demonstrate an application of an assumption-free reverse engineering of the intricate signalling network of the activated ATM/ATR pathway. We next studied the consequences of such drug induced inductions as well as of time dependent ATM kinase inhibition on cell survival through further biological experiments. Intermediate and temporal modelling outcomes revealed the distinct signaling profile associated with ATM kinase activity and inhibition and explained the underlying signalling mechanism for dual ATM functionality in cytotoxic and cytoprotective pathways

    Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1

    Get PDF
    Proneural transcription factors (TFs) such as Ascl1 function as master regulators of neurogenesis in vertebrates, being both necessary and sufficient for the activation of a full program of neuronal differentiation. Novel insights into the dynamics of Ascl1 expression at the cellular level, combined with the progressive characterization of its transcriptional program, have expanded the classical view of Ascl1 as a differentiation factor in neurogenesis. These advances resulted in a new model, whereby Ascl1 promotes sequentially the proliferation and differentiation of neural/stem progenitor cells. The multiple activities of Ascl1 are associated with the activation of distinct direct targets at progressive stages along the neuronal lineage. How this temporal pattern is established is poorly understood. Two modes of Ascl1 expression recently described (oscillatory vs. sustained) are likely to be of importance, together with additional mechanistic determinants such as the chromatin landscape and other transcriptional pathways. Here we revise these latest findings, and discuss their implications to the gene regulatory functions of Ascl1 during neurogenesis.FCT grants: (PTDC/SAU-BID/117418/2010, PTDC/NEU-NMC/0315/2012), Marie Curie CIG, FCT fellowships: (SFRH/BD/51178/2010, IF/00413/2012)

    Fine-Tuning of Energy Levels Regulates SUC2 via a SNF1-Dependent Feedback Loop

    Get PDF
    Nutrient sensing pathways are playing an important role in cellular response to different energy levels. In budding yeast, Saccharomyces cerevisiae, the sucrose non-fermenting protein kinase complex SNF1 is a master regulator of energy homeostasis. It is affected by multiple inputs, among which energy levels is the most prominent. Cells which are exposed to a switch in carbon source availability display a change in the gene expression machinery. It has been shown that the magnitude of the change varies from cell to cell. In a glucose rich environment Snf1/Mig1 pathway represses the expression of its downstream target, such as SUC2. However, upon glucose depletion SNF1 is activated which leads to an increase in SUC2 expression. Our single cell experiments indicate that upon starvation, gene expression pattern of SUC2 shows rapid increase followed by a decrease to initial state with high cell-to-cell variability. The mechanism behind this behavior is currently unknown. In this work we study the long-term behavior of the Snf1/Mig1 pathway upon glucose starvation with a microfluidics and non-linear mixed effect modeling approach. We show a negative feedback mechanism, involving Snf1 and Reg1, which reduces SUC2 expression after the initial strong activation. Snf1 kinase activity plays a key role in this feedback mechanism. Our systems biology approach proposes a negative feedback mechanism that works through the SNF1 complex and is controlled by energy levels. We further show that Reg1 likely is involved in the negative feedback mechanism

    Topological augmentation to infer hidden processes in biological systems

    Get PDF
    Motivation: A common problem in understanding a biochemical system is to infer its correct structure or topology. This topology consists of all relevant state variables—usually molecules and their interactions. Here we present a method called topological augmentation to infer this structure in a statistically rigorous and systematic way from prior knowledge and experimental data. Results: Topological augmentation starts from a simple model that is unable to explain the experimental data and augments its topology by adding new terms that capture the experimental behavior. This process is guided by representing the uncertainty in the model topology through stochastic differential equations whose trajectories contain information about missing model parts. We first apply this semiautomatic procedure to a pharmacokinetic model. This example illustrates that a global sampling of the parameter space is critical for inferring a correct model structure. We also use our method to improve our understanding of glutamine transport in yeast. This analysis shows that transport dynamics is determined by glutamine permeases with two different kinds of kinetics. Topological augmentation can not only be applied to biochemical systems, but also to any system that can be described by ordinary differential equations. Availability and implementation: Matlab code and examples are available at: http://www.csb.ethz.ch/tools/index. Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Allo-network drugs: Extension of the allosteric drug concept to protein-protein interaction and signaling networks

    Get PDF
    Allosteric drugs are usually more specific and have fewer side effects than orthosteric drugs targeting the same protein. Here, we overview the current knowledge on allosteric signal transmission from the network point of view, and show that most intra-protein conformational changes may be dynamically transmitted across protein-protein interaction and signaling networks of the cell. Allo-network drugs influence the pharmacological target protein indirectly using specific inter-protein network pathways. We show that allo-network drugs may have a higher efficiency to change the networks of human cells than those of other organisms, and can be designed to have specific effects on cells in a diseased state. Finally, we summarize possible methods to identify allo-network drug targets and sites, which may develop to a promising new area of systems-based drug design

    An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli.

    Get PDF
    Given the vast behavioral repertoire and biological complexity of even the simplest organisms, accurately predicting phenotypes in novel environments and unveiling their biological organization is a challenging endeavor. Here, we present an integrative modeling methodology that unifies under a common framework the various biological processes and their interactions across multiple layers. We trained this methodology on an extensive normalized compendium for the gram-negative bacterium Escherichia coli, which incorporates gene expression data for genetic and environmental perturbations, transcriptional regulation, signal transduction, and metabolic pathways, as well as growth measurements. Comparison with measured growth and high-throughput data demonstrates the enhanced ability of the integrative model to predict phenotypic outcomes in various environmental and genetic conditions, even in cases where their underlying functions are under-represented in the training set. This work paves the way toward integrative techniques that extract knowledge from a variety of biological data to achieve more than the sum of their parts in the context of prediction, analysis, and redesign of biological systems

    Systems analysis of host-parasite interactions.

    Get PDF
    Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies
    • …
    corecore