6,535 research outputs found

    Differentially Testing Soundness and Precision of Program Analyzers

    Full text link
    In the last decades, numerous program analyzers have been developed both by academia and industry. Despite their abundance however, there is currently no systematic way of comparing the effectiveness of different analyzers on arbitrary code. In this paper, we present the first automated technique for differentially testing soundness and precision of program analyzers. We used our technique to compare six mature, state-of-the art analyzers on tens of thousands of automatically generated benchmarks. Our technique detected soundness and precision issues in most analyzers, and we evaluated the implications of these issues to both designers and users of program analyzers

    On the Termination of Linear and Affine Programs over the Integers

    Full text link
    The termination problem for affine programs over the integers was left open in\cite{Braverman}. For more that a decade, it has been considered and cited as a challenging open problem. To the best of our knowledge, we present here the most complete response to this issue: we show that termination for affine programs over Z is decidable under an assumption holding for almost all affine programs, except for an extremely small class of zero Lesbegue measure. We use the notion of asymptotically non-terminating initial variable values} (ANT, for short) for linear loop programs over Z. Those values are directly associated to initial variable values for which the corresponding program does not terminate. We reduce the termination problem of linear affine programs over the integers to the emptiness check of a specific ANT set of initial variable values. For this class of linear or affine programs, we prove that the corresponding ANT set is a semi-linear space and we provide a powerful computational methods allowing the automatic generation of these ANTANT sets. Moreover, we are able to address the conditional termination problem too. In other words, by taking ANT set complements, we obtain a precise under-approximation of the set of inputs for which the program does terminate.Comment: arXiv admin note: substantial text overlap with arXiv:1407.455

    Synthesizing Short-Circuiting Validation of Data Structure Invariants

    Full text link
    This paper presents incremental verification-validation, a novel approach for checking rich data structure invariants expressed as separation logic assertions. Incremental verification-validation combines static verification of separation properties with efficient, short-circuiting dynamic validation of arbitrarily rich data constraints. A data structure invariant checker is an inductive predicate in separation logic with an executable interpretation; a short-circuiting checker is an invariant checker that stops checking whenever it detects at run time that an assertion for some sub-structure has been fully proven statically. At a high level, our approach does two things: it statically proves the separation properties of data structure invariants using a static shape analysis in a standard way but then leverages this proof in a novel manner to synthesize short-circuiting dynamic validation of the data properties. As a consequence, we enable dynamic validation to make up for imprecision in sound static analysis while simultaneously leveraging the static verification to make the remaining dynamic validation efficient. We show empirically that short-circuiting can yield asymptotic improvements in dynamic validation, with low overhead over no validation, even in cases where static verification is incomplete

    Inferring Loop Invariants using Postconditions

    Full text link
    One of the obstacles in automatic program proving is to obtain suitable loop invariants. The invariant of a loop is a weakened form of its postcondition (the loop's goal, also known as its contract); the present work takes advantage of this observation by using the postcondition as the basis for invariant inference, using various heuristics such as "uncoupling" which prove useful in many important algorithms. Thanks to these heuristics, the technique is able to infer invariants for a large variety of loop examples. We present the theory behind the technique, its implementation (freely available for download and currently relying on Microsoft Research's Boogie tool), and the results obtained.Comment: Slightly revised versio

    Danger Invariants

    Get PDF

    LNCS

    Get PDF
    We introduce in this paper AMT 2.0 , a tool for qualitative and quantitative analysis of hybrid continuous and Boolean signals that combine numerical values and discrete events. The evaluation of the signals is based on rich temporal specifications expressed in extended Signal Temporal Logic (xSTL), which integrates Timed Regular Expressions (TRE) within Signal Temporal Logic (STL). The tool features qualitative monitoring (property satisfaction checking), trace diagnostics for explaining and justifying property violations and specification-driven measurement of quantitative features of the signal

    Automatically refining partial specifications for Program Verification

    Get PDF
    10.1007/978-3-642-21437-0_28Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)6664 LNCS369-38
    corecore