12 research outputs found

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future

    Fair-RTT-DAS: A robust and efficient dynamic adaptive streaming over ICN

    Get PDF
    To sustain the adequate bandwidth demands over rapidly growing multimedia traffic and considering the effectiveness of Information-Centric Networking (ICN), recently, HTTP based Dynamic Adaptive Streaming (DASH) has been introduced over ICN, which significantly increases the network bandwidth utilisation. However, we identified that the inherent features of ICN also causes new vulnerabilities in the network. In this paper, we first propose a novel attack called as Bitrate Oscillation Attack (BOA), which exploits fundamental ICN characteristics: in-network caching and interest aggregation, to disrupt DASH functionality. In particular, the proposed attack forces the bitrate and resolution of video received by the attacked client to oscillate with high frequency and high amplitude during the streaming process. To detect and mitigate BOA, we design and implement a reactive countermeasure called Fair-RTT-DAS. Our solution ensures efficient bandwidth utilisation and improves the user perceived Quality of Experience (QoE) in the presence of varying content source locations. For this purpose, Fair-RTT-DAS consider DASH\u2019s two significant features: round-trip-time (RTT) and throughput fairness. In the presence of BOA in a network, our simulation results show an increase in the annoyance factor in user\u2019s spatial dimension, i.e., increase in oscillation frequency and amplitude. The results also show that our countermeasure significantly alleviates these adverse effects and makes dynamic adaptive streaming friendly to ICN\u2019s implicit features

    A hybrid rate control mechanism for forwarding and congestion control in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a pull-based, in-path caching, hop-by-hop, and multi-path transport architecture. Therefore, transport algorithms which use conventional paradigms would not work correctly in the NDN environment, since the content source location frequently changes. These changes raise forwarding and congestion control problems, and they directly affect the link utilization, fairness, and stability of the network. This study proposes a Hybrid Rate Control Mechanism (HRCM) to control the forwarding rate and link congestion to enhance network scalability, stability, and fairness performance. HRCM consists of three schemes namely Shaping Deficit Weight Round Robin (SDWRR), Queue-delay Parallel Multipath (QPM), and Explicit Control Agile-based conservative window adaptation (EC-Agile). The SDWRR scheme is scheduling different flows in router interfaces by fairly detecting and notifying the link congestion. The QPM scheme has been designed to forward Interest packets to all available paths that utilize idle bandwidths. The EC-Agile scheme controls forwarding rates by examining each packet received. The proposed HRCM was evaluated by comparing it with two different mechanisms, namely Practical Congestion Control (PCON) and Hop-by-hop Interest Shaping (HIS) through ndnSIM simulation. The findings show that HRCM enhances the forwarding rate and fairness. HRCM outperforms HIS and PCON in terms of throughput by 75%, delay 20%, queue length 55%, link utilization 41%, fairness 20%, and download time 20%. The proposed HRCM contributes to providing an enhanced forwarding rate and fairness in NDN with different types of traffic flow. Thus, the SDWRR, QPM, and EC-Agile schemes can be used in monitoring, controlling, and managing congestion and forwarding for the Internet of the future

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Bowdoin Orient v.104, no.1-24 (1974-1975)

    Get PDF
    https://digitalcommons.bowdoin.edu/bowdoinorient-1970s/1005/thumbnail.jp

    Auditing: theory and practice

    Full text link
    Thesis (M.B.A.)--Boston Universit
    corecore