932 research outputs found

    Advances in crowd analysis for urban applications through urban event detection

    Get PDF
    The recent expansion of pervasive computing technology has contributed with novel means to pursue human activities in urban space. The urban dynamics unveiled by these means generate an enormous amount of data. These data are mainly endowed by portable and radio-frequency devices, transportation systems, video surveillance, satellites, unmanned aerial vehicles, and social networking services. This has opened a new avenue of opportunities, to understand and predict urban dynamics in detail, and plan various real-time services and applications in response to that. Over the last decade, certain aspects of the crowd, e.g., mobility, sentimental, size estimation and behavioral, have been analyzed in detail and the outcomes have been reported. This paper mainly conducted an extensive survey on various data sources used for different urban applications, the state-of-the-art on urban data generation techniques and associated processing methods in order to demonstrate their merits and capabilities. Then, available open-access crowd data sets for urban event detection are provided along with relevant application programming interfaces. In addition, an outlook on a support system for urban application is provided which fuses data from all the available pervasive technology sources and finally, some open challenges and promising research directions are outlined

    Temporal patterns behind the strength of persistent ties

    Get PDF
    Social networks are made out of strong and weak ties having very different structural and dynamical properties. But what features of human interaction build a strong tie? Here we approach this question from a practical way by finding what are the properties of social interactions that make ties more persistent and thus stronger to maintain social interactions in the future. Using a large longitudinal mobile phone database we build a predictive model of tie persistence based on intensity, intimacy, structural and temporal patterns of social interaction. While our results confirm that structural (embeddedness) and intensity (number of calls) features are correlated with tie persistence, temporal features of communication events are better and more efficient predictors for tie persistence. Specifically, although communication within ties is always bursty we find that ties that are more bursty than the average are more likely to decay, signaling that tie strength is not only reflected in the intensity or topology of the network, but also on how individuals distribute time or attention across their relationships. We also found that stable relationships have and require a constant rhythm and if communication is halted for more than 8 times the previous communication frequency, most likely the tie will decay. Our results not only are important to understand the strength of social relationships but also to unveil the entanglement between the different temporal scales in networks, from microscopic tie burstiness and rhythm to macroscopic network evolution.EM acknowledges funding from Ministerio de EconomĂ­a y Competividad (Spain) through projects FIS2013-47532-C3-3-P and FIS2016-78904-C3-3-P

    A survey of results on mobile phone datasets analysis

    Get PDF

    Comparison of CDR and GPS data for estimating the individual activity space

    Get PDF
    • …
    corecore