1,089 research outputs found

    ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes

    Get PDF
    ChIP-on-chip has emerged as a powerful tool to dissect the complex network of regulatory interactions between transcription factors and their targets. However, most ChIP-on-chip analysis methods use conservative approaches aimed to minimize false-positive transcription factor targets. We present a model with improved sensitivity in detecting binding events from ChIP-on-chip data. Biochemically validated analysis in human T-cells reveals that three transcription factor oncogenes, NOTCH1, MYC, and HES1, bind one order of magnitude more promoters than previously thought. Gene expression profiling upon NOTCH1 inhibition shows broad-scale functional regulation across the entire range of predicted target genes, establishing a closer link between occupancy and regulation. Finally, the resolution of a more complete map of transcriptional targets reveals that MYC binds nearly all promoters bound by NOTCH1. Overall, these results suggest an unappreciated complexity of transcriptional regulatory networks and highlight the fundamental importance of genome-scale analysis to represent transcriptional programs

    Identifying the genetic determinants of transcription factor activity

    Get PDF
    Genome-wide messenger RNA expression levels are highly heritable. However, the molecular mechanisms underlying this heritability are poorly understood.The influence of trans-acting polymorphisms is often mediated by changes in the regulatory activity of one or more sequence-specific transcription factors (TFs). We use a method that exploits prior information about the DNA-binding specificity of each TF to estimate its genotype-specific regulatory activity. To this end, we perform linear regression of genotype-specific differential mRNA expression on TF-specific promoter-binding affinity.Treating inferred TF activity as a quantitative trait and mapping it across a panel of segregants from an experimental genetic cross allows us to identify trans-acting loci (‘aQTLs') whose allelic variation modulates the TF. A few of these aQTL regions contain the gene encoding the TF itself; several others contain a gene whose protein product is known to interact with the TF.Our method is strictly causal, as it only uses sequence-based features as predictors. Application to budding yeast demonstrates a dramatic increase in statistical power, compared with existing methods, to detect locus-TF associations and trans-acting loci. Our aQTL mapping strategy also succeeds in mouse

    A Predictive Model of the Oxygen and Heme Regulatory Network in Yeast

    Get PDF
    Deciphering gene regulatory mechanisms through the analysis of high-throughput expression data is a challenging computational problem. Previous computational studies have used large expression datasets in order to resolve fine patterns of coexpression, producing clusters or modules of potentially coregulated genes. These methods typically examine promoter sequence information, such as DNA motifs or transcription factor occupancy data, in a separate step after clustering. We needed an alternative and more integrative approach to study the oxygen regulatory network in Saccharomyces cerevisiae using a small dataset of perturbation experiments. Mechanisms of oxygen sensing and regulation underlie many physiological and pathological processes, and only a handful of oxygen regulators have been identified in previous studies. We used a new machine learning algorithm called MEDUSA to uncover detailed information about the oxygen regulatory network using genome-wide expression changes in response to perturbations in the levels of oxygen, heme, Hap1, and Co2+. MEDUSA integrates mRNA expression, promoter sequence, and ChIP-chip occupancy data to learn a model that accurately predicts the differential expression of target genes in held-out data. We used a novel margin-based score to extract significant condition-specific regulators and assemble a global map of the oxygen sensing and regulatory network. This network includes both known oxygen and heme regulators, such as Hap1, Mga2, Hap4, and Upc2, as well as many new candidate regulators. MEDUSA also identified many DNA motifs that are consistent with previous experimentally identified transcription factor binding sites. Because MEDUSA's regulatory program associates regulators to target genes through their promoter sequences, we directly tested the predicted regulators for OLE1, a gene specifically induced under hypoxia, by experimental analysis of the activity of its promoter. In each case, deletion of the candidate regulator resulted in the predicted effect on promoter activity, confirming that several novel regulators identified by MEDUSA are indeed involved in oxygen regulation. MEDUSA can reveal important information from a small dataset and generate testable hypotheses for further experimental analysis. Supplemental data are included

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    A framework to identify epigenome and transcription factor crosstalk

    Get PDF
    While changes in chromatin are integral to transcriptional reprogramming during cellular differentiation, it is currently unclear how chromatin modifications are targeted to specific loci. To systematically identify transcription factors (TFs) that can direct chromatin changes during cell fate decisions, we model the genome-wide dynamics of chromatin marks in terms of computationally predicted TF binding sites. By applying this computational approach to a time course of Polycomb-mediated H3K27me3 marks during neuronal differentiation of murine stem cells, we identify several motifs that likely regulate dynamics of this chromatin mark. Among these, the motifs bound by REST and by the SNAIL family of TFs are predicted to transiently recruit H3K27me3 in neuronal progenitors. We validate these predictions experimentally and show that absence of REST indeed causes loss of H3K27me3 at target promoters in trans, specifically at the neuronal progenitor state. Moreover, using targeted transgenic insertion, we show that promoter fragments containing REST or SNAIL binding sites are sufficient to recruit H3K27me3 in cis, while deletion of these sites results in loss of H3K27me3. These findings illustrate that the occurrence of TF binding sites can determine chromatin dynamics. Local determination of Polycomb activity by Rest and Snail motifs exemplifies such TF based regulation of chromatin. Furthermore, our results show that key TFs can be identified ab initio through computational modeling of epigenome datasets using a modeling approach that we make readily accessible

    Selecting Optimal Combinations of Transcription Factors to Promote Axon Regeneration: Why Mechanisms Matter

    Get PDF
    Recovery from injuries to the central nervous system, including spinal cord injury, is constrained in part by the intrinsically low ability of many CNS neurons to mount an effective regenerative growth response. To improve outcomes, it is essential to understand and ultimately reverse these neuron-intrinsic constraints. Genetic manipulation of key transcription factors (TFs), which act to orchestrate production of multiple regeneration-associated genes, has emerged as a promising strategy. It is likely that no single TF will be sufficient to fully restore neuron-intrinsic growth potential, and that multiple, functionally interacting factors will be needed. An extensive literature, mostly from non-neural cell types, has identified potential mechanisms by which TFs can functionally synergize. Here we examine four potential mechanisms of TF/TF interaction; physical interaction, transcriptional cross-regulation, signaling-based cross regulation, and co-occupancy of regulatory DNA. For each mechanism, we consider how existing knowledge can be used to guide the discovery and effective use of TF combinations in the context of regenerative neuroscience. This mechanistic insight into TF interactions is needed to accelerate the design of effective TF-based interventions to relieve neuron-intrinsic constraints to regeneration and to foster recovery from CNS injury

    Computational study of associations between histone modification and protein-DNA binding in yeast genome by integrating diverse information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In parallel with the quick development of high-throughput technologies, <it>in vivo (vitro) </it>experiments for genome-wide identification of protein-DNA interactions have been developed. Nevertheless, a few questions remain in the field, such as how to distinguish true protein-DNA binding (functional binding) from non-specific protein-DNA binding (non-functional binding). Previous researches tackled the problem by integrated analysis of multiple available sources. However, few systematic studies have been carried out to examine the possible relationships between histone modification and protein-DNA binding. Here this issue was investigated by using publicly available histone modification data in yeast.</p> <p>Results</p> <p>Two separate histone modification datasets were studied, at both the open reading frame (ORF) and the promoter region of binding targets for 37 yeast transcription factors. Both results revealed a distinct histone modification pattern between the functional protein-DNA binding sites and non-functional ones for almost half of all TFs tested. Such difference is much stronger at the ORF than at the promoter region. In addition, a protein-histone modification interaction pathway can only be inferred from the functional protein binding targets.</p> <p>Conclusions</p> <p>Overall, the results suggest that histone modification information can be used to distinguish the functional protein-DNA binding from the non-functional, and that the regulation of various proteins is controlled by the modification of different histone lysines such as the protein-specific histone modification levels.</p

    Inferring direct regulatory targets from expression and genome location analyses: a comparison of transcription factor deletion and overexpression

    Get PDF
    BACKGROUND: Effects on gene expression due to environmental or genetic changes can be easily measured using microarrays. However, indirect effects on expression can be substantial. The indirect effects of a perturbation need to be distinguished from the direct effects if we are to understand the structure and behavior of regulatory networks. RESULTS: The most direct way to perturb a transcriptional network is to alter transcription factor activity. Here, for the first time, we compare expression changes and genomic binding in a simple regulon under conditions of both low and high transcription factor activity. Specifically, we assessed the effects on expression and binding due to deletion of the yeast LEU3 transcription factor gene and effects due to elevation of Leu3 activity. Leu3 activity was elevated through overexpression and the introduction of a mutation that renders the protein constitutively active. Genes that are bound and/or regulated by Leu3 under one or both conditions were characterized in terms of their functional annotations and their predicted potential to be bound by Leu3. We also assessed the evolutionary conservation of the predicted binding potential using a novel alignment-independent method. Both perturbations yield genes that are likely to be direct targets of Leu3, including most of the classically defined targets. Additional direct targets are identified by each of the methods. However, experimental and computational criteria suggest that most genes whose expression is affected by the Leu3 genotype are unlikely to be regulated by binding of the protein. CONCLUSION: Most genes that are differentially expressed by Leu3 are not direct targets despite the exceptional simplicity of the regulon, and the unusually direct nature of the perturbations investigated. These conclusions are reached through computational analyses that support and extend chromatin immunoprecipitation data on the identities of direct targets. These results have implications for the interpretation of expression experiments, especially in cases for which chromatin immunoprecipitation data are unavailable, incomplete, or ambiguous
    corecore