901 research outputs found

    Inferring sentiment-based priors in topic models

    Get PDF
    © Springer International Publishing Switzerland 2015. Over the recent years, several topic models have appeared that are specifically tailored for sentiment analysis, including the Joint Sentiment/Topic model, Aspect and Sentiment Unification Model, and User-Sentiment Topic Model. Most of these models incorporate sentiment knowledge in the β priors; however, these priors are usually set from a dictionary and completely rely on previous domain knowledge to identify positive and negative words. In this work, we show a new approach to automatically infer sentiment-based β priors in topic models for sentiment analysis and opinion mining; the approach is based on the EM algorithm. We show that this method leads to significant improvements for sentiment analysis in known topic models and also can be used to update sentiment dictionaries with new positive and negative words

    Inferring Dynamic User Interests in Streams of Short Texts for User Clustering

    Get PDF
    User clustering has been studied from different angles. In order to identify shared interests, behavior-based methods consider similar browsing or search patterns of users, whereas content-based methods use information from the contents of the documents visited by the users. So far, content-based user clustering has mostly focused on static sets of relatively long documents. Given the dynamic nature of social media, there is a need to dynamically cluster users in the context of streams of short texts. User clustering in this setting is more challenging than in the case of long documents, as it is difficult to capture the users’ dynamic topic distributions in sparse data settings. To address this problem, we propose a dynamic user clustering topic model (UCT). UCT adaptively tracks changes of each user’s time-varying topic distributions based both on the short texts the user posts during a given time period and on previously estimated distributions. To infer changes, we propose a Gibbs sampling algorithm where a set of word pairs from each user is constructed for sampling. UCT can be used in two ways: (1) as a short-term dependency model that infers a user’s current topic distribution based on the user’s topic distributions during the previous time period only, and (2) as a long-term dependency model that infers a user’s current topic distributions based on the user’s topic distributions during multiple time periods in the past. The clustering results are explainable and human-understandable, in contrast to many other clustering algorithms. For evaluation purposes, we work with a dataset consisting of users and tweets from each user. Experimental results demonstrate the effectiveness of our proposed short-term and long-term dependency user clustering models compared to state-of-the-art baselines

    Multinomial Inverse Regression for Text Analysis

    Full text link
    Text data, including speeches, stories, and other document forms, are often connected to sentiment variables that are of interest for research in marketing, economics, and elsewhere. It is also very high dimensional and difficult to incorporate into statistical analyses. This article introduces a straightforward framework of sentiment-preserving dimension reduction for text data. Multinomial inverse regression is introduced as a general tool for simplifying predictor sets that can be represented as draws from a multinomial distribution, and we show that logistic regression of phrase counts onto document annotations can be used to obtain low dimension document representations that are rich in sentiment information. To facilitate this modeling, a novel estimation technique is developed for multinomial logistic regression with very high-dimension response. In particular, independent Laplace priors with unknown variance are assigned to each regression coefficient, and we detail an efficient routine for maximization of the joint posterior over coefficients and their prior scale. This "gamma-lasso" scheme yields stable and effective estimation for general high-dimension logistic regression, and we argue that it will be superior to current methods in many settings. Guidelines for prior specification are provided, algorithm convergence is detailed, and estimator properties are outlined from the perspective of the literature on non-concave likelihood penalization. Related work on sentiment analysis from statistics, econometrics, and machine learning is surveyed and connected. Finally, the methods are applied in two detailed examples and we provide out-of-sample prediction studies to illustrate their effectiveness.Comment: Published in the Journal of the American Statistical Association 108, 2013, with discussion (rejoinder is here: http://arxiv.org/abs/1304.4200). Software is available in the textir package for

    CSNE : Conditional Signed Network Embedding

    Get PDF
    Signed networks are mathematical structures that encode positive and negative relations between entities such as friend/foe or trust/distrust. Recently, several papers studied the construction of useful low-dimensional representations (embeddings) of these networks for the prediction of missing relations or signs. Existing embedding methods for sign prediction generally enforce different notions of status or balance theories in their optimization function. These theories, however, are often inaccurate or incomplete, which negatively impacts method performance. In this context, we introduce conditional signed network embedding (CSNE). Our probabilistic approach models structural information about the signs in the network separately from fine-grained detail. Structural information is represented in the form of a prior, while the embedding itself is used for capturing fine-grained information. These components are then integrated in a rigorous manner. CSNE's accuracy depends on the existence of sufficiently powerful structural priors for modelling signed networks, currently unavailable in the literature. Thus, as a second main contribution, which we find to be highly valuable in its own right, we also introduce a novel approach to construct priors based on the Maximum Entropy (MaxEnt) principle. These priors can model the polarity of nodes (degree to which their links are positive) as well as signed triangle counts (a measure of the degree structural balance holds to in a network). Experiments on a variety of real-world networks confirm that CSNE outperforms the state-of-the-art on the task of sign prediction. Moreover, the MaxEnt priors on their own, while less accurate than full CSNE, achieve accuracies competitive with the state-of-the-art at very limited computational cost, thus providing an excellent runtime-accuracy trade-off in resource-constrained situations

    CSNE: Conditional Signed Network Embedding

    Get PDF
    Signed networks are mathematical structures that encode positive and negative relations between entities such as friend/foe or trust/distrust. Recently, several papers studied the construction of useful low-dimensional representations (embeddings) of these networks for the prediction of missing relations or signs. Existing embedding methods for sign prediction generally enforce different notions of status or balance theories in their optimization function. These theories, however, are often inaccurate or incomplete, which negatively impacts method performance. In this context, we introduce conditional signed network embedding (CSNE). Our probabilistic approach models structural information about the signs in the network separately from fine-grained detail. Structural information is represented in the form of a prior, while the embedding itself is used for capturing fine-grained information. These components are then integrated in a rigorous manner. CSNE's accuracy depends on the existence of sufficiently powerful structural priors for modelling signed networks, currently unavailable in the literature. Thus, as a second main contribution, which we find to be highly valuable in its own right, we also introduce a novel approach to construct priors based on the Maximum Entropy (MaxEnt) principle. These priors can model the \emph{polarity} of nodes (degree to which their links are positive) as well as signed \emph{triangle counts} (a measure of the degree structural balance holds to in a network). Experiments on a variety of real-world networks confirm that CSNE outperforms the state-of-the-art on the task of sign prediction. Moreover, the MaxEnt priors on their own, while less accurate than full CSNE, achieve accuracies competitive with the state-of-the-art at very limited computational cost, thus providing an excellent runtime-accuracy trade-off in resource-constrained situations

    The supervised hierarchical Dirichlet process

    Full text link
    We propose the supervised hierarchical Dirichlet process (sHDP), a nonparametric generative model for the joint distribution of a group of observations and a response variable directly associated with that whole group. We compare the sHDP with another leading method for regression on grouped data, the supervised latent Dirichlet allocation (sLDA) model. We evaluate our method on two real-world classification problems and two real-world regression problems. Bayesian nonparametric regression models based on the Dirichlet process, such as the Dirichlet process-generalised linear models (DP-GLM) have previously been explored; these models allow flexibility in modelling nonlinear relationships. However, until now, Hierarchical Dirichlet Process (HDP) mixtures have not seen significant use in supervised problems with grouped data since a straightforward application of the HDP on the grouped data results in learnt clusters that are not predictive of the responses. The sHDP solves this problem by allowing for clusters to be learnt jointly from the group structure and from the label assigned to each group.Comment: 14 page
    • …
    corecore