1,154 research outputs found

    The role of explanations in inductive learning

    Get PDF

    Analysis and Transformation Tools for Constrained Horn Clause Verification

    Get PDF
    Several techniques and tools have been developed for verification of properties expressed as Horn clauses with constraints over a background theory (CHC). Current CHC verification tools implement intricate algorithms and are often limited to certain subclasses of CHC problems. Our aim in this work is to investigate the use of a combination of off-the-shelf techniques from the literature in analysis and transformation of Constraint Logic Programs (CLPs) to solve challenging CHC verification problems. We find that many problems can be solved using a combination of tools based on well-known techniques from abstract interpretation, semantics-preserving transformations, program specialisation and query-answer transformations. This gives insights into the design of automatic, more general CHC verification tools based on a library of components.Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Components for automatic horn clause verification

    Get PDF

    Acta Cybernetica : Volume 9. Number 4.

    Get PDF

    Better Together: Unifying Datalog and Equality Saturation

    Full text link
    We present egglog, a fixpoint reasoning system that unifies Datalog and equality saturation (EqSat). Like Datalog, it supports efficient incremental execution, cooperating analyses, and lattice-based reasoning. Like EqSat, it supports term rewriting, efficient congruence closure, and extraction of optimized terms. We identify two recent applications--a unification-based pointer analysis in Datalog and an EqSat-based floating-point term rewriter--that have been hampered by features missing from Datalog but found in EqSat or vice-versa. We evaluate egglog by reimplementing those projects in egglog. The resulting systems in egglog are faster, simpler, and fix bugs found in the original systems.Comment: PLDI 202

    A Semantic Information Management Approach for Improving Bridge Maintenance based on Advanced Constraint Management

    Get PDF
    Bridge rehabilitation projects are important for transportation infrastructures. This research proposes a novel information management approach based on state-of-the-art deep learning models and ontologies. The approach can automatically extract, integrate, complete, and search for project knowledge buried in unstructured text documents. The approach on the one hand facilitates implementation of modern management approaches, i.e., advanced working packaging to delivery success bridge rehabilitation projects, on the other hand improves information management practices in the construction industry

    Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

    Get PDF
    The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs G\mathcal{G} and H\mathcal{H}, decide whether H\mathcal{H} consists precisely of all minimal transversals of G\mathcal{G} (in which case we say that G\mathcal{G} is the dual of H\mathcal{H}). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in GC(log2n,PTIME)\mathrm{GC}(\log^2 n,\mathrm{PTIME}), where GC(f(n),C)\mathrm{GC}(f(n),\mathcal{C}) denotes the complexity class of all problems that after a nondeterministic guess of O(f(n))O(f(n)) bits can be decided (checked) within complexity class C\mathcal{C}. It was conjectured that non-DUAL is in GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class GC(log2n,TC0)\mathrm{GC}(\log^2 n,\mathrm{TC}^0) which is a subclass of GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). We here refer to the logtime-uniform version of TC0\mathrm{TC}^0, which corresponds to FO(COUNT)\mathrm{FO(COUNT)}, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess O(log2n)O(\log^2 n) bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT)\mathrm{FO(COUNT)}. From this result, by the well known inclusion TC0LOGSPACE\mathrm{TC}^0\subseteq\mathrm{LOGSPACE}, it follows that DUAL belongs also to DSPACE[log2n]\mathrm{DSPACE}[\log^2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs G\mathcal{G} and H\mathcal{H}, computes in quadratic logspace a transversal of G\mathcal{G} missing in H\mathcal{H}.Comment: Restructured the presentation in order to be the extended version of a paper that will shortly appear in SIAM Journal on Computin
    corecore