758 research outputs found

    Classes of Terminating Logic Programs

    Full text link
    Termination of logic programs depends critically on the selection rule, i.e. the rule that determines which atom is selected in each resolution step. In this article, we classify programs (and queries) according to the selection rules for which they terminate. This is a survey and unified view on different approaches in the literature. For each class, we present a sufficient, for most classes even necessary, criterion for determining that a program is in that class. We study six classes: a program strongly terminates if it terminates for all selection rules; a program input terminates if it terminates for selection rules which only select atoms that are sufficiently instantiated in their input positions, so that these arguments do not get instantiated any further by the unification; a program local delay terminates if it terminates for local selection rules which only select atoms that are bounded w.r.t. an appropriate level mapping; a program left-terminates if it terminates for the usual left-to-right selection rule; a program exists-terminates if there exists a selection rule for which it terminates; finally, a program has bounded nondeterminism if it only has finitely many refutations. We propose a semantics-preserving transformation from programs with bounded nondeterminism into strongly terminating programs. Moreover, by unifying different formalisms and making appropriate assumptions, we are able to establish a formal hierarchy between the different classes.Comment: 50 pages. The following mistake was corrected: In figure 5, the first clause for insert was insert([],X,[X]

    Inferring Termination Conditions for Logic Programs using Backwards Analysis

    Full text link
    This paper focuses on the inference of modes for which a logic program is guaranteed to terminate. This generalises traditional termination analysis where an analyser tries to verify termination for a specified mode. Our contribution is a methodology in which components of traditional termination analysis are combined with backwards analysis to obtain an analyser for termination inference. We identify a condition on the components of the analyser which guarantees that termination inference will infer all modes which can be checked to terminate. The application of this methodology to enhance a traditional termination analyser to perform also termination inference is demonstrated

    Non-Termination Inference of Logic Programs

    Full text link
    We present a static analysis technique for non-termination inference of logic programs. Our framework relies on an extension of the subsumption test, where some specific argument positions can be instantiated while others are generalized. We give syntactic criteria to statically identify such argument positions from the text of a program. Atomic left looping queries are generated bottom-up from selected subsets of the binary unfoldings of the program of interest. We propose a set of correct algorithms for automating the approach. Then, non-termination inference is tailored to attempt proofs of optimality of left termination conditions computed by a termination inference tool. An experimental evaluation is reported. When termination and non-termination analysis produce complementary results for a logic procedure, then with respect to the leftmost selection rule and the language used to describe sets of atomic queries, each analysis is optimal and together, they induce a characterization of the operational behavior of the logic procedure.Comment: Long version (algorithms and proofs included) of a paper submitted to TOPLA

    Non-termination Analysis of Logic Programs with Integer arithmetics

    Full text link
    In the past years, analyzers have been introduced to detect classes of non-terminating queries for definite logic programs. Although these non-termination analyzers have shown to be rather precise, their applicability on real-life Prolog programs is limited because most Prolog programs use non-logical features. As a first step towards the analysis of Prolog programs, this paper presents a non-termination condition for Logic Programs containing integer arithmetics. The analyzer is based on our non-termination analyzer presented at ICLP 2009. The analysis starts from a class of queries and infers a subclass of non-terminating ones. In a first phase, we ignore the outcome (success or failure) of the arithmetic operations, assuming success of all arithmetic calls. In a second phase, we characterize successful arithmetic calls as a constraint problem, the solution of which determines the non-terminating queries.Comment: 15 pages, 2 figures, journal TPLP (special issue on the international conference of logic programming

    Inference of termination conditions for numerical loops

    Full text link
    We present a new approach to termination analysis of numerical computations in logic programs. Traditional approaches fail to analyse them due to non well-foundedness of the integers. We present a technique that allows to overcome these difficulties. Our approach is based on transforming a program in way that allows integrating and extending techniques originally developed for analysis of numerical computations in the framework of query-mapping pairs with the well-known framework of acceptability. Such an integration not only contributes to the understanding of termination behaviour of numerical computations, but also allows to perform a correct analysis of such computations automatically, thus, extending previous work on a constraints-based approach to termination. In the last section of the paper we discuss possible extensions of the technique, including incorporating general term orderings.Comment: Presented at WST200

    Inference of termination conditions for numerical loops in Prolog

    Full text link
    We present a new approach to termination analysis of numerical computations in logic programs. Traditional approaches fail to analyse them due to non well-foundedness of the integers. We present a technique that allows overcoming these difficulties. Our approach is based on transforming a program in a way that allows integrating and extending techniques originally developed for analysis of numerical computations in the framework of query-mapping pairs with the well-known framework of acceptability. Such an integration not only contributes to the understanding of termination behaviour of numerical computations, but also allows us to perform a correct analysis of such computations automatically, by extending previous work on a constraint-based approach to termination. Finally, we discuss possible extensions of the technique, including incorporating general term orderings.Comment: To appear in Theory and Practice of Logic Programming. To appear in Theory and Practice of Logic Programmin
    • …
    corecore