796 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Clust-IT:Clustering-Based Intrusion Detection in IoT Environments

    Get PDF
    Low-powered and resource-constrained devices are forming a greater part of our smart networks. For this reason, they have recently been the target of various cyber-attacks. However, these devices often cannot implement traditional intrusion detection systems (IDS), or they can not produce or store the audit trails needed for inspection. Therefore, it is often necessary to adapt existing IDS systems and malware detection approaches to cope with these constraints. We explore the application of unsupervised learning techniques, specifically clustering, to develop a novel IDS for networks composed of low-powered devices. We describe our solution, called Clust-IT (Clustering of IoT), to manage heterogeneous data collected from cooperative and distributed networks of connected devices and searching these data for indicators of compromise while remaining protocol agnostic. We outline a novel application of OPTICS to various available IoT datasets, composed of both packet and flow captures, to demonstrate the capabilities of the proposed techniques and evaluate their feasibility in developing an IoT IDS

    Fingerprinting the Smart Home: Detection of Smart Assistants Based on Network Activity

    Get PDF
    As the concept of the Smart Home is being embraced globally, IoT devices such as the Amazon Echo, Google Home, and Nest Thermostat are becoming a part of more and more households. In the data-driven world we live in today, internet service providers (ISPs) and companies are collecting large amounts of data and using it to learn about their customers. As a result, it is becoming increasingly important to understand what information ISPs are capable of collecting. IoT devices in particular exhibit distinct behavior patterns and specific functionality which make them especially likely to reveal sensitive information. Collection of this data provides valuable information and can have some serious privacy implications. In this work I present an approach to fingerprinting IoT devices behind private networks while only examining last-mile internet traffic . Not only does this attack only rely on traffic that would be available to an ISP, it does not require changes to existing infrastructure. Further, it does not rely on packet contents, and therefore works despite encryption. Using a database of 64 million packets logged over 15 weeks I was able to train machine learning models to classify the Amazon Echo Dot, Amazon Echo Show, Eufy Genie, and Google Home consistently. This approach combines unsupervised and supervised learning and achieves a precision of 99.95\%, equating to one false positive per 2,000 predictions. Finally, I discuss the implication of identifying devices within a home

    Machine learning for smart building applications: Review and taxonomy

    Get PDF
    © 2019 Association for Computing Machinery. The use of machine learning (ML) in smart building applications is reviewed in this article. We split existing solutions into two main classes: occupant-centric versus energy/devices-centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories: (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed, and compared; open perspectives and research trends are discussed as well. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The article ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field

    Data-Driven Approaches for Detecting Malware-Infected IoT Devices and Characterizing Their Unsolicited Behaviors by Leveraging Passive Internet Measurements

    Get PDF
    Despite the benefits of Internet of Things (IoT) devices, the insecurity of IoT and their deployment nature have turned them into attractive targets for adversaries, which contributed to the rise of IoT-tailored malware as a major threat to the Internet ecosystem. In this thesis, we address the threats associated with the emerging IoT malware, which utilize exploited devices to perform large-scale cyber attacks (e.g., DDoS). To mitigate such threat, there is a need to possess an Internet perspective of the deployed IoT devices while building a better understanding about the behavioral characteristic of malware-infected devices, which is challenging due to the lack of empirical data and knowledge about the deployed IoT devices and their behavioral characteristics. To address these challenges, in this thesis, we leverage passive Internet measurements and IoT device information to detect exploited IoT devices and investigate their generated traffic at the network telescope (darknet). We aim at proposing data-driven approaches for effective and near real-time IoT threat detection and characterization. Additionally, we leverage a specialized IoT Honeypot to analyze a large corpus of real IoT malware binary executable. We aim at building a better understanding about the current state of IoT malware while addressing the problems of IoT malware classification and family attribution. To this end, we perform the following to achieve our objectives: First, we address the lack of empirical data and knowledge about IoT devices and their activities. To this end, we leverage an online IoT search engine (e.g., Shodan.io) to obtain publicly available device information in the realms of consumer and cyber-physical system (CPS), while utilizing passive network measurements collected at a large-scale network telescope (CAIDA), to infer compromised devices and their unsolicited activities. Indeed, we were among the first to report experimental results on detecting compromised IoT devices and their behavioral characteristics in the wild, while demonstrating their active involvement in large-scale malware-generated malicious activities such as Internet scanning. Additionally, we leverage the IoT-generated backscatter traffic towards the network telescope to shed light on IoT devices that were victims of intensive Denial of Service (DoS) attacks. Second, given the highly orchestrated nature of IoT-driven cyber-attacks, we focus on the analysis of IoT-generated scanning activities to detect and characterize scanning campaigns generated by IoT botnets. To this end, we aggregate IoT-generated traffic and performing association rules mining to infer campaigns through common scanning objectives represented by targeted destination ports. Further, we leverage behavioural characteristics and aggregated flow features to correlate IoT devices using DBSCAN clustering algorithm. Indeed, our findings shed light on compromised IoT devices, which tend to operate within well coordinated IoT botnets. Third, considering the huge number of IoT devices and the magnitude of their malicious scanning traffic, we focus on addressing the operational challenges to automate large-scale campaign detection and analysis while generating threat intelligence in a timely manner. To this end, we leverage big data analytic frameworks such as Apache Spark to develop a scalable system for automated detection of infected IoT devices and characterization of their scanning activities using our proposed approach. Our evaluation results with over 4TB of IoT traffic demonstrated the effectiveness of the system to infer scanning campaigns generated by IoT botnets. Moreover, we demonstrate the feasibility of the implemented system/framework as a platform for implementing further supporting applications, which leverage passive Internet measurement for characterizing IoT traffic and generating IoT-related threat intelligence. Fourth, we take first steps towards mitigating threats associated with the rise of IoT malware by creating a better understanding about the characteristics and inter-relations of IoT malware. To this end, we analyze about 70,000 IoT malware binaries obtained by a specialized IoT honeypot in the past two years. We investigate the distribution of IoT malware across known families, while exploring their detection timeline and persistent. Moreover, while we shed light on the effectiveness of IoT honeypots in detecting new/unknown malware samples, we utilize static and dynamic malware analysis techniques to uncover adversarial infrastructure and investigate functional similarities. Indeed, our findings enable unknown malware labeling/attribution while identifying new IoT malware variants. Additionally, we collect malware-generated scanning traffic (whenever available) to explore behavioral characteristics and associated threats/vulnerabilities. We conclude this thesis by discussing research gaps that pave the way for future work

    Analysis of Internet of Things (IOT) ecosystem from the perspective of device functionality, application security and application accessibility, An

    Get PDF
    2022 Spring.Includes bibliographical references.Internet of Thing (IoT) devices are being widely used in smart homes and organizations. IoT devices can have security vulnerabilities in different fronts: Device front with embedded functionalities and Application front. This work aims to analyze IoT devices security health from device functionality perspective and application security and accessibility perspective to understand holistic picture of entire IoT ecosystem's security health. An IoT device has some intended purposes, but may also have hidden functionalities. Typically, the device is installed in a home or an organization and the network traffic associated with the device is captured and analyzed to infer high-level functionality to the extent possible. However, such analysis is dynamic in nature, and requires the installation of the device and access to network data which is often hard to get for privacy and confidentiality reasons. In this work, we propose an alternative static approach which can infer the functionality of a device from vendor materials using Natural Language Processing (NLP) techniques. Information about IoT device functionality can be used in various applications, one of which is ensuring security in a smart home. We can also use the device functionalities in various security applications especially access control policies. Based on the functionality of a device we can provide assurance to the consumer that these devices will be compliant to the home or organizational policy even before they have been purchased. Most IoT devices interface with the user through mobile companion apps. Such apps are used to configure, update, and control the device(s) constituting a critical component in the IoT ecosystem, but they have historically been under-studied. In this thesis, we also perform security and accessibility analysis of IoT application on 265 apps to understand security and accessibility vulnerabilities present in the apps and identify some mitigating strategies
    • …
    corecore