24 research outputs found

    Computational socioeconomics

    Get PDF
    Uncovering the structure of socioeconomic systems and timely estimation of socioeconomic status are significant for economic development. The understanding of socioeconomic processes provides foundations to quantify global economic development, to map regional industrial structure, and to infer individual socioeconomic status. In this review, we will make a brief manifesto about a new interdisciplinary research field named Computational Socioeconomics, followed by detailed introduction about data resources, computational tools, data-driven methods, theoretical models and novel applications at multiple resolutions, including the quantification of global economic inequality and complexity, the map of regional industrial structure and urban perception, the estimation of individual socioeconomic status and demographic, and the real-time monitoring of emergent events. This review, together with pioneering works we have highlighted, will draw increasing interdisciplinary attentions and induce a methodological shift in future socioeconomic studies

    Citizen Science and Geospatial Capacity Building

    Get PDF
    This book is a collection of the articles published the Special Issue of ISPRS International Journal of Geo-Information on ā€œCitizen Science and Geospatial Capacity Buildingā€. The articles cover a wide range of topics regarding the applications of citizen science from a geospatial technology perspective. Several applications show the importance of Citizen Science (CitSci) and volunteered geographic information (VGI) in various stages of geodata collection, processing, analysis and visualization; and for demonstrating the capabilities, which are covered in the book. Particular emphasis is given to various problems encountered in the CitSci and VGI projects with a geospatial aspect, such as platform, tool and interface design, ontology development, spatial analysis and data quality assessment. The book also points out the needs and future research directions in these subjects, such as; (a) data quality issues especially in the light of big data; (b) ontology studies for geospatial data suited for diverse user backgrounds, data integration, and sharing; (c) development of machine learning and artificial intelligence based online tools for pattern recognition and object identification using existing repositories of CitSci and VGI projects; and (d) open science and open data practices for increasing the efficiency, decreasing the redundancy, and acknowledgement of all stakeholders

    Spatiotemporal enabled Content-based Image Retrieval

    Full text link

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Design and validation of novel methods for long-term road traffic forecasting

    Get PDF
    132 p.Road traffic management is a critical aspect for the design and planning of complex urban transport networks for which vehicle flow forecasting is an essential component. As a testimony of its paramount relevance in transport planning and logistics, thousands of scientific research works have covered the traffic forecasting topic during the last 50 years. In the beginning most approaches relied on autoregressive models and other analysis methods suited for time series data. During the last two decades, the development of new technology, platforms and techniques for massive data processing under the Big Data umbrella, the availability of data from multiple sources fostered by the Open Data philosophy and an ever-growing need of decision makers for accurate traffic predictions have shifted the spotlight to data-driven procedures. Even in this convenient context, with abundance of open data to experiment and advanced techniques to exploit them, most predictive models reported in literature aim for shortterm forecasts, and their performance degrades when the prediction horizon is increased. Long-termforecasting strategies are more scarce, and commonly based on the detection and assignment to patterns. These approaches can perform reasonably well unless an unexpected event provokes non predictable changes, or if the allocation to a pattern is inaccurate.The main core of the work in this Thesis has revolved around datadriven traffic forecasting, ultimately pursuing long-term forecasts. This has broadly entailed a deep analysis and understanding of the state of the art, and dealing with incompleteness of data, among other lesser issues. Besides, the second part of this dissertation presents an application outlook of the developed techniques, providing methods and unexpected insights of the local impact of traffic in pollution. The obtained results reveal that the impact of vehicular emissions on the pollution levels is overshadowe

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently ā€“ to become ā€˜smartā€™ and ā€˜sustainableā€™. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ā€˜bigā€™ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently ā€“ to become ā€˜smartā€™ and ā€˜sustainableā€™. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ā€˜bigā€™ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently ā€“ to become ā€˜smartā€™ and ā€˜sustainableā€™. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ā€˜bigā€™ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore