2,376 research outputs found

    Coalescent-based genome analyses resolve the early branches of the euarchontoglires

    Get PDF
    Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods

    Inferring Kangaroo Phylogeny from Incongruent Nuclear and Mitochondrial Genes

    Get PDF
    The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.This work has been supported by Australian Research Council grants to MJP (DP07745015) and MB (FT0991741). The website for the funder is www.arc.gov.au. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Inferring kangaroo phylogeny from incongruent nuclear and mitochondrial genes

    Get PDF
    The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression

    Circumstances in which parsimony but not compatibility will be provably misleading

    Full text link
    Phylogenetic methods typically rely on an appropriate model of how data evolved in order to infer an accurate phylogenetic tree. For molecular data, standard statistical methods have provided an effective strategy for extracting phylogenetic information from aligned sequence data when each site (character) is subject to a common process. However, for other types of data (e.g. morphological data), characters can be too ambiguous, homoplastic or saturated to develop models that are effective at capturing the underlying process of change. To address this, we examine the properties of a classic but neglected method for inferring splits in an underlying tree, namely, maximum compatibility. By adopting a simple and extreme model in which each character either fits perfectly on some tree, or is entirely random (but it is not known which class any character belongs to) we are able to derive exact and explicit formulae regarding the performance of maximum compatibility. We show that this method is able to identify a set of non-trivial homoplasy-free characters, when the number nn of taxa is large, even when the number of random characters is large. By contrast, we show that a method that makes more uniform use of all the data --- maximum parsimony --- can provably estimate trees in which {\em none} of the original homoplasy-free characters support splits.Comment: 37 pages, 2 figure

    Resolution among major placental mammal interordinal relationships with genome data imply that speciation influenced their earliest radiations

    Get PDF
    Background: A number of the deeper divergences in the placental mammal tree are still inconclusively resolved despite extensive phylogenomic analyses. A recent analysis of 200 kbp of protein coding sequences yielded only limited support for the relationships among Laurasiatheria (cow, dog, bat and shrew), probably because the divergences occurred only within a few million years from each other. It is generally expected that increasing the amount of data and improving the taxon sampling enhance the resolution of narrow divergences. Therefore these and other difficult splits were examined by phylogenomic analysis of the hitherto largest sequence alignment. The increasingly complete genome data of placental mammals also allowed developing a novel and stringent data search method. Results: The rigorous data handling, recursive BLAST, successfully removed the sequences from gene families, including those from well-known families hemoglobin, olfactory, myosin and HOX genes, thus avoiding alignment of possibly paralogous sequences. The current phylogenomic analysis of 3,012 genes (2,844,615 nucleotides) from a total of 22 species yielded statistically significant support for most relationships. While some major clades were confirmed using genomic sequence data, the placement of the treeshrew, bat and the relationship between Boreoeutheria, Xenarthra and Afrotheria remained problematic to resolve despite the size of the alignment. Phylogenomic analysis of divergence times dated the basal placental mammal splits at 95–100 million years ago. Many of the following divergences occurred only a few (2–4) million years later. Relationships with narrow divergence time intervals received unexpectedly limited support even from the phylogenomic analyses. Conclusion: The narrow temporal window within which some placental divergences took place suggests that inconsistencies and limited resolution of the mammalian tree may have their natural explanation in speciation processes such as lineage sorting, introgression from species hybridization or hybrid speciation. These processes obscure phylogenetic analysis, making some parts of the tree difficult to resolve even with genome data

    Evolutionary history of LINE-1 in the major clades of placental mammals

    Get PDF
    BACKGROUND: LINE-1 constitutes an important component of mammalian genomes. It has a dynamic evolutionary history characterized by the rise, fall and replacement of subfamilies. Most data concerning LINE-1 biology and evolution are derived from the human and mouse genomes and are often assumed to hold for all placentals. METHODOLOGY: To examine LINE-1 relationships, sequences from the 3′ region of the reverse transcriptase from 21 species (representing 13 orders across Afrotheria, Xenarthra, Supraprimates and Laurasiatheria) were obtained from whole genome sequence assemblies, or by PCR with degenerate primers. These sequences were aligned and analysed. PRINCIPAL FINDINGS: Our analysis reflects accepted placental relationships suggesting mostly lineage-specific LINE-1 families. The data provide clear support for several clades including Glires, Supraprimates, Laurasiatheria, Boreoeutheria, Xenarthra and Afrotheria. Within the afrotherian LINE-1 (AfroLINE) clade, our tree supports Paenungulata, Afroinsectivora and Afroinsectiphillia. Xenarthran LINE-1 (XenaLINE) falls sister to AfroLINE, providing some support for the Atlantogenata (Xenarthra+Afrotheria) hypothesis. SIGNIFICANCE: LINEs and SINEs make up approximately half of all placental genomes, so understanding their dynamics is an essential aspect of comparative genomics. Importantly, a tree of LINE-1 offers a different view of the root, as long edges (branches) such as that to marsupials are shortened and/or broken up. Additionally, a robust phylogeny of diverse LINE-1 is essential in testing that site-specific LINE-1 insertions, often regarded as homoplasy-free phylogenetic markers, are indeed unique and not convergent
    • …
    corecore