1,432 research outputs found

    ProphNet: A generic prioritization method through propagation of information

    Get PDF
    This article has been published as part of BMC Bioinformatics Volume 15 Supplement 1, 2014: Integrated Bio-Search: Selected Works from the 12th International Workshop on Network Tools and Applications in Biology (NETTAB 2012).[Background] Prioritization methods have become an useful tool for mining large amounts of data to suggest promising hypotheses in early research stages. Particularly, network-based prioritization tools use a network representation for the interactions between different biological entities to identify novel indirect relationships. However, current network-based prioritization tools are strongly tailored to specific domains of interest (e.g. gene-disease prioritization) and they do not allow to consider networks with more than two types of entities (e.g. genes and diseases). Therefore, the direct application of these methods to accomplish new prioritization tasks is limited.[Results] This work presents ProphNet, a generic network-based prioritization tool that allows to integrate an arbitrary number of interrelated biological entities to accomplish any prioritization task. We tested the performance of ProphNet in comparison with leading network-based prioritization methods, namely rcNet and DomainRBF, for gene-disease and domain-disease prioritization, respectively. The results obtained by ProphNet show a significant improvement in terms of sensitivity and specificity for both tasks. We also applied ProphNet to disease-gene prioritization on Alzheimer, Diabetes Mellitus Type 2 and Breast Cancer to validate the results and identify putative candidate genes involved in these diseases.[Conclusions] ProphNet works on top of any heterogeneous network by integrating information of different types of biological entities to rank entities of a specific type according to their degree of relationship with a query set of entities of another type. Our method works by propagating information across data networks and measuring the correlation between the propagated values for a query and a target sets of entities. ProphNet is available at: http://genome2.ugr.es/prophnet webcite. A Matlab implementation of the algorithm is also available at the website.This work was part of projects P08-TIC-4299 of J. A., Sevilla and TIN2009-13489 of DGICT, Madrid. It was also supported by Plan Propio de Investigación, University of Granada

    Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model

    Get PDF
    abstract: Background Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. Results In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. Conclusions In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods recover true associations more accurately than other methods in terms of AUC values, and the performance differences are significant (with paired t-test p-values less than 0.05). This validates the importance to integrate tissue-specific molecular networks for studying disease gene prioritization and show the superiority of our network models and ranking algorithms toward this purpose. The source code and datasets are available at http://nijingchao.github.io/CRstar/.The electronic version of this article is the complete one and can be found online at: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1317-

    Regulatory Snapshots: Integrative Mining of Regulatory Modules from Expression Time Series and Regulatory Networks

    Get PDF
    Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched processes related to these biological events were identified. Ranking scores further suggested ability to discern the primary role of a gene (target or regulator). Prototype is available at: http://kdbio.inesc-id.pt/software/regulatorysnapshots

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes

    Get PDF
    Loss-of-function phenotypes of yeast genes can be predicted from the loss-of-function phenotypes of their neighbours in functional gene networks. This could potentially be applied to the prediction of human disease genes

    Functional Cohesion of Gene Sets Determined by Latent Semantic Indexing of PubMed Abstracts

    Get PDF
    High-throughput genomic technologies enable researchers to identify genes that are co-regulated with respect to specific experimental conditions. Numerous statistical approaches have been developed to identify differentially expressed genes. Because each approach can produce distinct gene sets, it is difficult for biologists to determine which statistical approach yields biologically relevant gene sets and is appropriate for their study. To address this issue, we implemented Latent Semantic Indexing (LSI) to determine the functional coherence of gene sets. An LSI model was built using over 1 million Medline abstracts for over 20,000 mouse and human genes annotated in Entrez Gene. The gene-to-gene LSI-derived similarities were used to calculate a literature cohesion p-value (LPv) for a given gene set using a Fisher's exact test. We tested this method against genes in more than 6,000 functional pathways annotated in Gene Ontology (GO) and found that approximately 75% of gene sets in GO biological process category and 90% of the gene sets in GO molecular function and cellular component categories were functionally cohesive (LPv<0.05). These results indicate that the LPv methodology is both robust and accurate. Application of this method to previously published microarray datasets demonstrated that LPv can be helpful in selecting the appropriate feature extraction methods. To enable real-time calculation of LPv for mouse or human gene sets, we developed a web tool called Gene-set Cohesion Analysis Tool (GCAT). GCAT can complement other gene set enrichment approaches by determining the overall functional cohesion of data sets, taking into account both explicit and implicit gene interactions reported in the biomedical literature

    Gene networks in Drosophila melanogaster: integrating experimental data to predict gene function

    Get PDF
    The first computational interaction network built from Drosophila melanogaster protein-protein and genetic interaction data allows the functional annotation of orphan genes and reveals clusters of functionally-related genes
    corecore