4 research outputs found

    Efficient Localized Inference for Large Graphical Models

    Full text link
    We propose a new localized inference algorithm for answering marginalization queries in large graphical models with the correlation decay property. Given a query variable and a large graphical model, we define a much smaller model in a local region around the query variable in the target model so that the marginal distribution of the query variable can be accurately approximated. We introduce two approximation error bounds based on the Dobrushin's comparison theorem and apply our bounds to derive a greedy expansion algorithm that efficiently guides the selection of neighbor nodes for localized inference. We verify our theoretical bounds on various datasets and demonstrate that our localized inference algorithm can provide fast and accurate approximation for large graphical models

    Maximum Likelihood Learning With Arbitrary Treewidth via Fast-Mixing Parameter Sets

    Full text link
    Inference is typically intractable in high-treewidth undirected graphical models, making maximum likelihood learning a challenge. One way to overcome this is to restrict parameters to a tractable set, most typically the set of tree-structured parameters. This paper explores an alternative notion of a tractable set, namely a set of "fast-mixing parameters" where Markov chain Monte Carlo (MCMC) inference can be guaranteed to quickly converge to the stationary distribution. While it is common in practice to approximate the likelihood gradient using samples obtained from MCMC, such procedures lack theoretical guarantees. This paper proves that for any exponential family with bounded sufficient statistics, (not just graphical models) when parameters are constrained to a fast-mixing set, gradient descent with gradients approximated by sampling will approximate the maximum likelihood solution inside the set with high-probability. When unregularized, to find a solution epsilon-accurate in log-likelihood requires a total amount of effort cubic in 1/epsilon, disregarding logarithmic factors. When ridge-regularized, strong convexity allows a solution epsilon-accurate in parameter distance with effort quadratic in 1/epsilon. Both of these provide of a fully-polynomial time randomized approximation scheme.Comment: Advances in Neural Information Processing Systems 201
    corecore