216 research outputs found

    Detection of Inferior Myocardial Infarction using Shallow Convolutional Neural Networks

    Full text link
    Myocardial Infarction is one of the leading causes of death worldwide. This paper presents a Convolutional Neural Network (CNN) architecture which takes raw Electrocardiography (ECG) signal from lead II, III and AVF and differentiates between inferior myocardial infarction (IMI) and healthy signals. The performance of the model is evaluated on IMI and healthy signals obtained from Physikalisch-Technische Bundesanstalt (PTB) database. A subject-oriented approach is taken to comprehend the generalization capability of the model and compared with the current state of the art. In a subject-oriented approach, the network is tested on one patient and trained on rest of the patients. Our model achieved a superior metrics scores (accuracy= 84.54%, sensitivity= 85.33% and specificity= 84.09%) when compared to the benchmark. We also analyzed the discriminating strength of the features extracted by the convolutional layers by means of geometric separability index and euclidean distance and compared it with the benchmark model

    Application of artificial intelligence techniques for automated detection of myocardial infarction: A review

    Full text link
    Myocardial infarction (MI) results in heart muscle injury due to receiving insufficient blood flow. MI is the most common cause of mortality in middle-aged and elderly individuals around the world. To diagnose MI, clinicians need to interpret electrocardiography (ECG) signals, which requires expertise and is subject to observer bias. Artificial intelligence-based methods can be utilized to screen for or diagnose MI automatically using ECG signals. In this work, we conducted a comprehensive assessment of artificial intelligence-based approaches for MI detection based on ECG as well as other biophysical signals, including machine learning (ML) and deep learning (DL) models. The performance of traditional ML methods relies on handcrafted features and manual selection of ECG signals, whereas DL models can automate these tasks. The review observed that deep convolutional neural networks (DCNNs) yielded excellent classification performance for MI diagnosis, which explains why they have become prevalent in recent years. To our knowledge, this is the first comprehensive survey of artificial intelligence techniques employed for MI diagnosis using ECG and other biophysical signals.Comment: 16 pages, 8 figure

    Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism

    Get PDF
    PURPOSE: Myocardial infarction (MI) is one of the most common cardiovascular diseases, frequently resulting in death. Early and accurate diagnosis is therefore important, and the electrocardiogram (ECG) is a simple and effective method for achieving this. However, it requires assessment by a specialist; so many recent works have focused on the automatic assessment of ECG signals. METHODS: For the detection and localization of MI, deep learning models have been proposed, but the diagnostic accuracy of this approaches still need to be improved. Moreover, with deep learning methods the way in which a given result was achieved lacks interpretability. In this study, ECG data was obtained from the PhysioBank open access database, and was analyzed as follows. Firstly, the 12-lead ECG signal was preprocessed to identify each beat and obtain each heart interval. Secondly, a multi-scale deep learning model combined with a residual network and attention mechanism was proposed, where the input was the 12-lead ECG recording. Through the SENet model and the Grad-CAM algorithm, the weighting of each lead was calculated and visualized. Using existing knowledge of the way in which different types of MI gave characteristic patterns in specific ECG leads, the model was used to provisionally diagnose the type of MI according to the characteristics of each of the 12 ECG leads. RESULTS: Ten types of MI anterior, anterior lateral, anterior septal, inferior, inferior lateral, inferior posterior, inferior posterior lateral, lateral, posterior, and posterior lateral were diagnosed. The average accuracy, sensitivity, and specificity for MI detection of all lesion types was 99.98, 99.94, and 99.98%, respectively; and the average accuracy, sensitivity, and specificity for MI localization was 99.79, 99.88, and 99.98%, respectively. CONCLUSION: When compared to existing models based on traditional machine learning methods, convolutional neural networks and recurrent neural networks, the results showed that the proposed model had better diagnostic performance, being superior in accuracy, sensitivity, and specificity

    Abnormality Detection in ECG Signal applying Poincare and Entropy-based Approaches

    Get PDF
    Detection of abnormality in heart is of major importance for early and appropriate clinical medication. In this work, we have proposed two models for detection of abnormality in ECG signals. The normal ECG signals are closely repetitive in nature to a large extent, whereas ECG signals with abnormalities tend to differ from cycle to cycle. Hence, repetitive plot like the Poincare is efficient to detect such non-repetitiveness of the signal; thereby, indicating abnormalities. Hence, we have used Poincare plot to develop the two proposed models. One of the models uses direct analysis of the binary image of the plot to detect the difference in retracing, between the healthy and unhealthy samples. The other model uses entropy of the Poincare plot to detect the difference in randomness of plots between the two classes. Most importantly, we have used only lead II ECG signal for analysis. This ensures ease of computation as it uses signal of only a single lead instead of the 12 leads of the complete ECG signal. We have validated the proposed models using ECG signals from the ‘ptb database’. We have observed that the entropy analysis of the Poincare plots gives the best results with 90% accuracy of abnormality detection. This high accuracy of classification, combined with less computational burden enables its practical implementation for the development of a real life abnormality detection schem

    Reliable Detection of Myocardial Ischemia Using Machine Learning Based on Temporal-Spatial Characteristics of Electrocardiogram and Vectorcardiogram

    Get PDF
    Background: Myocardial ischemia is a common early symptom of cardiovascular disease (CVD). Reliable detection of myocardial ischemia using computer-aided analysis of electrocardiograms (ECG) provides an important reference for early diagnosis of CVD. The vectorcardiogram (VCG) could improve the performance of ECG-based myocardial ischemia detection by affording temporal-spatial characteristics related to myocardial ischemia and capturing subtle changes in ST-T segment in continuous cardiac cycles. We aim to investigate if the combination of ECG and VCG could improve the performance of machine learning algorithms in automatic myocardial ischemia detection. Methods: The ST-T segments of 20-second, 12-lead ECGs, and VCGs were extracted from 377 patients with myocardial ischemia and 52 healthy controls. Then, sample entropy (SampEn, of 12 ECG leads and of three VCG leads), spatial heterogeneity index (SHI, of VCG) and temporal heterogeneity index (THI, of VCG) are calculated. Using a grid search, four SampEn and two features are selected as input signal features for ECG-only and VCG-only models based on support vector machine (SVM), respectively. Similarly, three features (S ( I ), THI, and SHI, where S ( I ) is the SampEn of lead I) are further selected for the ECG + VCG model. 5-fold cross validation was used to assess the performance of ECG-only, VCG-only, and ECG + VCG models. To fully evaluate the algorithmic generalization ability, the model with the best performance was selected and tested on a third independent dataset of 148 patients with myocardial ischemia and 52 healthy controls. Results: The ECG + VCG model with three features (S ( I ),THI, and SHI) yields better classifying results than ECG-only and VCG-only models with the average accuracy of 0.903, sensitivity of 0.903, specificity of 0.905, F1 score of 0.942, and AUC of 0.904, which shows better performance with fewer features compared with existing works. On the third independent dataset, the testing showed an AUC of 0.814. Conclusion: The SVM algorithm based on the ECG + VCG model could reliably detect myocardial ischemia, providing a potential tool to assist cardiologists in the early diagnosis of CVD in routine screening during primary care services

    Nonlinear Stochastic Modeling and Analysis of Cardiovascular System Dynamics - Diagnostic and Prognostic Applications

    Get PDF
    The purpose of this investigation is to develop monitoring, diagnostic and prognostic schemes for cardiovascular diseases by studying the nonlinear stochastic dynamics underlying complex heart system. The employment of a nonlinear stochastic analysis combined with wavelet representations can extract effective cardiovascular features, which will be more sensitive to the pathological dynamics instead of the extraneous noises. While conventional statistical and linear systemic approaches have limitations for capturing signal variations resulting from changes in the cardiovascular system states. The research methodology includes signal representation using optimal wavelet function design, feature extraction using nonlinear recurrence analysis, and local recurrence modeling for state prediction.Industrial Engineering & Managemen

    Development of a Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector

    Get PDF
    The central aim of this research is the development and deployment of a novel multilayer machine learning design with unique application for the diagnosis of myocardial infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) irrespective of their sampling frequencies over a given range. To the best of our knowledge, this design is the first to attempt inter-patient myocardial infarction detection from individual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is just at the time range in between extremely fast heartbeats of around 300 milliseconds, or 200 beats per minute. The design achieves stable performance metrics over the frequency range of 202Hz to 2.8kHz with an accuracy of 77.12%, positive predictive value (PPV) of 75.85%, and a negative predictive value (NPV) of 83.02% over the entire PTB database; 85.07%, 81.54%, 87.31% over the PTB-XL (the largest EKG database available for research) validation set, and 84.17%, 78.37%, 87.55% over the PTB-XL test set. Major design contributions and findings of this work reveal (1) a method for the realtime detection of ventricular depolarization events in the PQRST complex from 12-lead electrocardiograms using Independent Component Analysis (ICA), with a slightly different use of ICA proposed for electrocardiogram analysis and R-peak detection/localization; (2) a multilayer Long-Short Term Memory (LSTM) neural network design that identifies infarcted patients from a single heartbeat of a single-lead (lead II) electrocardiogram; (3) and integrated LSTM neural network with an algorithm that detects the R-peaks in real time for instantaneous detection of myocardial infarctions and for effective monitoring of patients under cardiac stress and/or at risk of myocardial infarction; (4) a fully integrated 12-lead real-time classifier with even higher detection metrics and a deeper neural architecture, which could serve as a near real-time monitoring tool that could gauge disease progression and evaluate benefits gained from early intervention and treatment planning; (5) a real-time frequency-independent design based on a single-lead single-beat MI detector, which is of pivotal importance to deployment as there is no standard sampling frequency for EKGs, making them span a wider frequency spectrum. vi

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua
    corecore