1,174 research outputs found

    Perception and reasoning for the automatic configuration of task and motion planning problems

    Get PDF
    This thesis proposes a framework for configuring Task Planning Problems flexibly in an automatic manner using two main modules which are the Perception Module and the Reasoning Module. In order to automatize the overall process, initially, a knowledge layer is generated manually, in which the information regarding the environment is stored using ontologies, whereas the environmental state where the task is taking place is observed with the help of the Perception Module. The knowledge layer is then reasoned within the Reasoner Module in order to automatically configure task planning problems by filling Planning Domain Definition Language (PDDL) [1] files. During this reasoning process, the information retrieved from the Perception Module is used. In this paper, both of these modules mentioned above are explained in detail before providing the results separately for each module. Then, in addition to individual results, a scenario is created within a lab environment to test the overall system including both modules. Furthermore, alternative areas where the Reasoning Module implementation can be benefited from is also discusse

    Handling Real-World Context Awareness, Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method

    Get PDF
    Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset), achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches.This work was funded by TUCS (Turku Centre for Computer Science), Finnish Cultural Foundation, Nokia Foundation, Google Anita Borg Scholarship, CEI BioTIC Project CEI2013-P-3, Contrato-Programa of Faculty of Education, Economy and Technology of Ceuta and Project TIN2012-30939 from National I+D Research Program (Spain). We also thank Fernando Bobillo for his support with FuzzyOWL and FuzzyDL tools

    An Introduction to Ontologies and Ontology Engineering

    Get PDF
    In the last decades, the use of ontologies in information systems has become more and more popular in various fields, such as web technologies, database integration, multi agent systems, natural language processing, etc. Artificial intelligent researchers have initially borrowed the word “ontology” from Philosophy, then the word spread in many scientific domain and ontologies are now used in several developments. The main goal of this chapter is to answer generic questions about ontologies, such as: Which are the different kinds of ontologies? What is the purpose of the use of ontologies in an application? Which methods can I use to build an ontology

    Probabilistic techniques in semantic mapping for mobile robotics

    Get PDF
    Los mapas semánticos son representaciones del mundo que permiten a un robot entender no sólo los aspectos espaciales de su lugar de trabajo, sino también el significado de sus elementos (objetos, habitaciones, etc.) y como los humanos interactúan con ellos (e.g. funcionalidades, eventos y relaciones). Para conseguirlo, un mapa semántico añade a las representaciones puramente espaciales, tales como mapas geométricos o topológicos, meta-información sobre los tipos de elementos y relaciones que pueden encontrarse en el entorno de trabajo. Esta meta-información, denominada conocimiento semántico o de sentido común, se codifica típicamente en Bases de Conocimiento. Un ejemplo de este tipo de información podría ser: "los frigoríficos son objetos grandes, con forma rectangular, colocados normalmente en las cocinas, y que pueden contener comida perecedera y medicación". Codificar y manejar este conocimiento semántico permite al robot razonar acerca de la información obtenida de un cierto lugar de trabajo, así como inferir nueva información con el fin de ejecutar eficientemente tareas de alto nivel como "¡hola robot! llévale la medicación a la abuela, por favor". La presente tesis propone la utilización de técnicas probabilísticas para construir y mantener mapas semánticos, lo cual presenta tres ventajas principales en comparación con los enfoques tradicionales: i) permite manejar incertidumbre (proveniente de los sensores imprecisos del robot y de los modelos empleados), ii) provee representaciones del entorno coherentes por medio del aprovechamiento de las relaciones contextuales entre los elementos observados (e.g. los frigoríficos usualmente se encuentran en las cocinas) desde un punto de vista holístico, y iii) produce valores de certidumbre que reflejan el grado de exactitud de la comprensión del robot acerca de su entorno. Específicamente, las contribuciones presentadas pueden agruparse en dos temas principales. El primer conjunto de contribuciones se basa en el problema del reconocimiento de objetos y/o habitaciones, ya que los sistemas de mapeo semántico deben contar con algoritmos de reconocimiento fiables para la construcción de representaciones válidas. Para ello se ha explorado la utilización de Modelos Gráficos Probabilísticos (Probabilistic Graphical Models o PGMs en inglés) con el fin de aprovechar las relaciones de contexto entre objetos y/o habitaciones a la vez que se maneja la incertidumbre inherente al problema de reconocimiento, y el empleo de Bases de Conocimiento para mejorar su desempeño de distintos modos, e.g., detectando resultados incoherentes, proveyendo información a priori, reduciendo la complejidad de los algoritmos de inferencia probabilística, generando ejemplos de entrenamiento sintéticos, habilitando el aprendizaje a partir de experiencias pasadas, etc. El segundo grupo de contribuciones acomoda los resultados probabilísticos provenientes de los algoritmos de reconocimiento desarrollados en una nueva representación semántica, denominada Multiversal Semantic Map (MvSmap). Este mapa gestiona múltiples interpretaciones del espacio de trabajo del robot, llamadas universos, los cuales son anotados con la probabilidad de ser los correctos de acuerdo con el conocimiento actual del robot. Así, este enfoque proporciona una creencia fundamentada sobre la exactitud de la comprensión del robot sobre su entorno, lo que le permite operar de una manera más eficiente y coherente. Los algoritmos probabilísticos propuestos han sido testeados concienzudamente y comparados con otros enfoques actuales e innovadores empleando conjuntos de datos del estado del arte. De manera adicional, esta tesis también contribuye con dos conjuntos de datos, UMA-Offices and Robot@Home, los cuales contienen información sensorial capturada en distintos entornos de oficinas y casas, así como dos herramientas software, la librería Undirected Probabilistic Graphical Models in C++ (UPGMpp), y el conjunto de herramientas Object Labeling Toolkit (OLT), para el trabajo con Modelos Gráficos Probabilísticos y el procesamiento de conjuntos de datos respectivamente

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    A virtual imaging platform for multi-modality medical image simulation.

    Get PDF
    International audienceThis paper presents the Virtual Imaging Platform (VIP), a platform accessible at http://vip.creatis.insa-lyon.fr to facilitate the sharing of object models and medical image simulators, and to provide access to distributed computing and storage resources. A complete overview is presented, describing the ontologies designed to share models in a common repository, the workflow template used to integrate simulators, and the tools and strategies used to exploit computing and storage resources. Simulation results obtained in four image modalities and with different models show that VIP is versatile and robust enough to support large simulations. The platform currently has 200 registered users who consumed 33 years of CPU time in 2011
    corecore