7,317 research outputs found

    Asynchronous spiking neurons, the natural key to exploit temporal sparsity

    Get PDF
    Inference of Deep Neural Networks for stream signal (Video/Audio) processing in edge devices is still challenging. Unlike the most state of the art inference engines which are efficient for static signals, our brain is optimized for real-time dynamic signal processing. We believe one important feature of the brain (asynchronous state-full processing) is the key to its excellence in this domain. In this work, we show how asynchronous processing with state-full neurons allows exploitation of the existing sparsity in natural signals. This paper explains three different types of sparsity and proposes an inference algorithm which exploits all types of sparsities in the execution of already trained networks. Our experiments in three different applications (Handwritten digit recognition, Autonomous Steering and Hand-Gesture recognition) show that this model of inference reduces the number of required operations for sparse input data by a factor of one to two orders of magnitudes. Additionally, due to fully asynchronous processing this type of inference can be run on fully distributed and scalable neuromorphic hardware platforms

    Direct Feedback Alignment with Sparse Connections for Local Learning

    Get PDF
    Recent advances in deep neural networks (DNNs) owe their success to training algorithms that use backpropagation and gradient-descent. Backpropagation, while highly effective on von Neumann architectures, becomes inefficient when scaling to large networks. Commonly referred to as the weight transport problem, each neuron's dependence on the weights and errors located deeper in the network require exhaustive data movement which presents a key problem in enhancing the performance and energy-efficiency of machine-learning hardware. In this work, we propose a bio-plausible alternative to backpropagation drawing from advances in feedback alignment algorithms in which the error computation at a single synapse reduces to the product of three scalar values. Using a sparse feedback matrix, we show that a neuron needs only a fraction of the information previously used by the feedback alignment algorithms. Consequently, memory and compute can be partitioned and distributed whichever way produces the most efficient forward pass so long as a single error can be delivered to each neuron. Our results show orders of magnitude improvement in data movement and 2Ă—2\times improvement in multiply-and-accumulate operations over backpropagation. Like previous work, we observe that any variant of feedback alignment suffers significant losses in classification accuracy on deep convolutional neural networks. By transferring trained convolutional layers and training the fully connected layers using direct feedback alignment, we demonstrate that direct feedback alignment can obtain results competitive with backpropagation. Furthermore, we observe that using an extremely sparse feedback matrix, rather than a dense one, results in a small accuracy drop while yielding hardware advantages. All the code and results are available under https://github.com/bcrafton/ssdfa.Comment: 15 pages, 8 figure

    Using a weightless neural network to forecast stock prices: A case study of Nigerian stock exchange

    Get PDF
    This research work, proposes forecasting stock prices in the stock market industry in Nigeria using a Weightless Neural Network (WNN). A neural network application used to demonstrate the application of the WNN in the forecasting of stock prices in the market is designed and implemented in Visual Foxpro 6.0. The proposed network is tested with stock data obtained from the Nigeria Stock Exchange. This system is compared with Single Exponential Smoothing (SES) model. The WNN error value is found to be 0.39 while that of SES is 9.78, based on these values, forecasting with the WNN is observed to be more accurate and closer to the real data than those using the SES model

    Training Dynamic Exponential Family Models with Causal and Lateral Dependencies for Generalized Neuromorphic Computing

    Full text link
    Neuromorphic hardware platforms, such as Intel's Loihi chip, support the implementation of Spiking Neural Networks (SNNs) as an energy-efficient alternative to Artificial Neural Networks (ANNs). SNNs are networks of neurons with internal analogue dynamics that communicate by means of binary time series. In this work, a probabilistic model is introduced for a generalized set-up in which the synaptic time series can take values in an arbitrary alphabet and are characterized by both causal and instantaneous statistical dependencies. The model, which can be considered as an extension of exponential family harmoniums to time series, is introduced by means of a hybrid directed-undirected graphical representation. Furthermore, distributed learning rules are derived for Maximum Likelihood and Bayesian criteria under the assumption of fully observed time series in the training set.Comment: Published in IEEE ICASSP 2019. Author's Accepted Manuscrip
    • …
    corecore