1,077 research outputs found

    Inference over Wireless IoT Links with Importance-Filtered Updates

    Full text link
    We consider a communication cell comprised of Internet-of-Things (IoT) nodes transmitting to a common Access Point (AP). The nodes in the cell are assumed to generate data samples periodically, which are to be transmitted to the AP. The AP hosts a machine learning model, such as a neural network, which is trained on the received data samples to make accurate inferences. We address the following tradeoff: The more often the IoT nodes transmit, the higher the accuracy of the inference made by the AP, but also the higher the energy expenditure at the IoT nodes. We propose a data filtering scheme employed by the IoT nodes, which we refer to as distributed importance filtering in order to filter out redundant data samples already at the IoT nodes. The IoT nodes do not have large on-device machine learning models and the data filtering scheme operates under periodic instructions from the model placed at the AP. The proposed scheme is evaluated using neural networks on a benchmark machine vision dataset, as well as in two practical scenarios: leakage detection in water distribution networks and air-pollution detection in urban areas. The results show that the proposed scheme offers significant benefits in terms of network longevity as it preserves the devices' resources, whilst maintaining high inference accuracy. Our approach reduces the the computational complexity for training the model and obviates the need for data pre-processing, which makes it highly applicable in practical IoT scenarios

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Indoor navigation for the visually impaired : enhancements through utilisation of the Internet of Things and deep learning

    Get PDF
    Wayfinding and navigation are essential aspects of independent living that heavily rely on the sense of vision. Walking in a complex building requires knowing exact location to find a suitable path to the desired destination, avoiding obstacles and monitoring orientation and movement along the route. People who do not have access to sight-dependent information, such as that provided by signage, maps and environmental cues, can encounter challenges in achieving these tasks independently. They can rely on assistance from others or maintain their independence by using assistive technologies and the resources provided by smart environments. Several solutions have adapted technological innovations to combat navigation in an indoor environment over the last few years. However, there remains a significant lack of a complete solution to aid the navigation requirements of visually impaired (VI) people. The use of a single technology cannot provide a solution to fulfil all the navigation difficulties faced. A hybrid solution using Internet of Things (IoT) devices and deep learning techniques to discern the patterns of an indoor environment may help VI people gain confidence to travel independently. This thesis aims to improve the independence and enhance the journey of VI people in an indoor setting with the proposed framework, using a smartphone. The thesis proposes a novel framework, Indoor-Nav, to provide a VI-friendly path to avoid obstacles and predict the user s position. The components include Ortho-PATH, Blue Dot for VI People (BVIP), and a deep learning-based indoor positioning model. The work establishes a novel collision-free pathfinding algorithm, Orth-PATH, to generate a VI-friendly path via sensing a grid-based indoor space. Further, to ensure correct movement, with the use of beacons and a smartphone, BVIP monitors the movements and relative position of the moving user. In dark areas without external devices, the research tests the feasibility of using sensory information from a smartphone with a pre-trained regression-based deep learning model to predict the user s absolute position. The work accomplishes a diverse range of simulations and experiments to confirm the performance and effectiveness of the proposed framework and its components. The results show that Indoor-Nav is the first type of pathfinding algorithm to provide a novel path to reflect the needs of VI people. The approach designs a path alongside walls, avoiding obstacles, and this research benchmarks the approach with other popular pathfinding algorithms. Further, this research develops a smartphone-based application to test the trajectories of a moving user in an indoor environment

    Understanding IoT Security Through the Data Crystal Ball: Where We Are Now and Where We Are Going To Be

    Get PDF
    Inspired by the boom of the consumer IoT market, many device manufacturers, new start-up companies and technology behemoths have jumped into the space. Indeed, in a span of less than 5 years, we have experienced the manifestation of an array of solutions for the smart home, smart cities and even smart cars. Unfortunately, the exciting utility and rapid marketization of IoTs, come at the expense of privacy and security. Online and industry reports, and academic work have revealed a number of attacks on IoT systems, resulting in privacy leakage, property loss and even large-scale availability problems on some of the most influential Internet services (e.g. Netflix, Twitter). To mitigate such threats, a few new solutions have been proposed. However, it is still less clear what are the impacts they can have on the IoT ecosystem. In this work, we aim to perform a comprehensive study on reported attacks and defenses in the realm of IoTs aiming to find out what we know, where the current studies fall short and how to move forward. To this end, we first build a toolkit that searches through massive amount of online data using semantic analysis to identify over 3000 IoT-related articles (papers, reports and news). Further, by clustering such collected data using machine learning technologies, we are able to compare academic views with the findings from industry and other sources, in an attempt to understand the gaps between them, the trend of the IoT security risks and new problems that need further attention. We systemize this process, by proposing a taxonomy for the IoT ecosystem and organizing IoT security into five problem areas. We use this taxonomy as a beacon to assess each IoT work across a number of properties we define. Our assessment reveals that despite the acknowledged and growing concerns on IoT from both industry and academia, relevant security and privacy problems are far from solved. We discuss how each proposed solution can be applied to a problem area and highlight their strengths, assumptions and constraints. We stress the need for a security framework for IoT vendors and discuss the trend of shifting security liability to external or centralized entities. We also identify open research problems and provide suggestions towards a secure IoT ecosystem

    Pervasive Secure Content Delivery Networks Implementation

    Get PDF
    Over the years, communication networks have been shifting their focus from providing connectivity in a client/server model to providing a service or content. This shift has led to topic areas like Service-Oriented Architecture (SOA), Heterogeneous Wireless Mesh Networks, and Ubiquitous Computing. Furthermore, probably the broadest of these areas which embarks all is the Internet of Things (IoT). The IoT is defined as an Internet where all physical entities (e.g., vehicles, appliances, smart phones, smart homes, computers, etc.), which we interact daily are connected and exchanging data among themselves and users. The IoT has become a global goal for companies, researchers, and users alike due to its different implementation and functional benefits: performance efficiency, coverage, economic and health. Due to the variety of devices which connect to it, it is expected that the IoT is composed of multiple technologies interacting together, to deliver a service. This technologies interactions renders an important challenge that must be overcome: how to communicate these technologies effectively and securely? The answer to this question is vital for a successful deployment of IoT and achievement of all the potential benefits that the IoT promises. This thesis proposes a SOA approach at the Network Layer to be able to integrate all technologies involved, in a transparent manner. The proposed set of solutions is composed of primarily the secure implementation of a unifying routing algorithm and a layered messaging model to standardize communication of all devices. Security is targeted to address the three main security concerns (i.e., confidentiality, integrity, and availability), with pervasive schemes that can be employed for any kind of device on the client, backbone, and server side. The implementation of such schemes is achieved by standard current security mechanisms (e.g., encryption), in combination with novel context and intelligent checks that detect compromised devices. Moreover, a decentralized content processing design is presented. In such design, content processing is handled at the client side, allowing server machines to serve more content, while being more reliable and capable of processing complete security checks on data and client integrity
    • …
    corecore