199 research outputs found

    Inference of regulatory networks with a convergence improved MCMC sampler

    Get PDF

    Novel Bayesian methodology for the analysis of single-cell RNA sequencing data.

    Get PDF
    With single-cell RNA sequencing (scRNA-seq) technology, researchers are able to gain a better understanding of health and disease through the analysis of gene expression data at the cellular-level; however, scRNA-seq data tend to have high proportions of zero values, increased cell-to-cell variability, and overdispersion due to abnormally large expression counts, which create new statistical problems that need to be addressed. This dissertation includes three research projects that propose Bayesian methodology suitable for scRNA-seq analysis. In the first project, a hurdle model for identifying differentially expressed genes across cell types in scRNA-seq data is presented. This model incorporates a correlated random effects structure based on an initial clustering of cells to capture the cell-to-cell variability within treatment groups but can easily be adapted to an independent random effect structure if needed. A sparse Bayesian factor model is introduced in the second project to uncover network structures associated with genes in scRNA-seq data. Latent factors impact the gene expression values for each cell and provide flexibility to account for the common features of scRNA-seq. The third project expands upon this latent factor model to allow for the comparison of networks across different treatment groups

    Statistical Methods in Integrative Genomics

    Get PDF
    Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions

    Computational approaches for single-cell omics and multi-omics data

    Get PDF
    Single-cell omics and multi-omics technologies have enabled the study of cellular heterogeneity with unprecedented resolution and the discovery of new cell types. The core of identifying heterogeneous cell types, both existing and novel ones, relies on efficient computational approaches, including especially cluster analysis. Additionally, gene regulatory network analysis and various integrative approaches are needed to combine data across studies and different multi-omics layers. This thesis comprehensively compared Bayesian clustering models for single-cell RNAsequencing (scRNA-seq) data and selected integrative approaches were used to study the cell-type specific gene regulation of uterus. Additionally, single-cell multi-omics data integration approaches for cell heterogeneity analysis were investigated. Article I investigated analytical approaches for cluster analysis in scRNA-seq data, particularly, latent Dirichlet allocation (LDA) and hierarchical Dirichlet process (HDP) models. The comparison of LDA and HDP together with the existing state-of-art methods revealed that topic modeling-based models can be useful in scRNA-seq cluster analysis. Evaluation of the cluster qualities for LDA and HDP with intrinsic and extrinsic cluster quality metrics indicated that the clustering performance of these methods is dataset dependent. Article II and Article III focused on cell-type specific integrative analysis of uterine or decidual stromal (dS) and natural killer (dNK) cells that are important for successful pregnancy. Article II integrated the existing preeclampsia RNA-seq studies of the decidua together with recent scRNA-seq datasets in order to investigate cell-type-specific contributions of early onset preeclampsia (EOP) and late onset preeclampsia (LOP). It was discovered that the dS marker genes were enriched for LOP downregulated genes and the dNK marker genes were enriched for upregulated EOP genes. Article III presented a gene regulatory network analysis for the subpopulations of dS and dNK cells. This study identified novel subpopulation specific transcription factors that promote decidualization of stromal cells and dNK mediated maternal immunotolerance. In Article IV, different strategies and methodological frameworks for data integration in single-cell multi-omics data analysis were reviewed in detail. Data integration methods were grouped into early, late and intermediate data integration strategies. The specific stage and order of data integration can have substantial effect on the results of the integrative analysis. The central details of the approaches were presented, and potential future directions were discussed.  Laskennallisia menetelmiä yksisolusekvensointi- ja multiomiikkatulosten analyyseihin Yksisolusekvensointitekniikat mahdollistavat solujen heterogeenisyyden tutkimuksen ennennäkemättömällä resoluutiolla ja uusien solutyyppien löytämisen. Solutyyppien tunnistamisessa keskeisessä roolissa on ryhmittely eli klusterointianalyysi. Myös geenien säätelyverkostojen sekä eri molekyylidatatasojen yhdistäminen on keskeistä analyysissä. Väitöskirjassa verrataan bayesilaisia klusterointimenetelmiä ja yhdistetään eri menetelmillä kerättyjä tietoja kohdun solutyyppispesifisessä geeninsäätelyanalyysissä. Lisäksi yksisolutiedon integraatiomenetelmiä selvitetään kattavasti. Julkaisu I keskittyy analyyttisten menetelmien, erityisesti latenttiin Dirichletallokaatioon (LDA) ja hierarkkiseen Dirichlet-prosessiin (HDP) perustuvien mallien tutkimiseen yksisoludatan klusterianalyysissä. Kattava vertailu näiden kahden mallin sekä olemassa olevien menetelmien kanssa paljasti, että aihemallinnuspohjaiset menetelmät voivat olla hyödyllisiä yksisoludatan klusterianalyysissä. Menetelmien suorituskyky riippui myös kunkin analysoitavan datasetin ominaisuuksista. Julkaisuissa II ja III keskitytään naisen lisääntymisterveydelle tärkeiden kohdun stroomasolujen ja NK-immuunisolujen solutyyppispesifiseen analyysiin. Artikkelissa II yhdistettiin olemassa olevia tuloksia pre-eklampsiasta viimeisimpiin yksisolusekvensointituloksiin ja löydettiin varhain alkavan pre-eklampsian (EOP) ja myöhään alkavan pre-eklampsian (LOP) solutyyppispesifisiä vaikutuksia. Havaittiin, että erilaistuneen strooman markkerigeenien ilmentyminen vähentyi LOP:ssa ja NK-markkerigeenien ilmentyminen lisääntyi EOP:ssa. Julkaisu III analysoi strooman ja NK-solujen alapopulaatiospesifisiä geeninsäätelyverkostoja ja niiden transkriptiofaktoreita. Tutkimus tunnisti uusia alapopulaatiospesifisiä säätelijöitä, jotka edistävät strooman erilaistumista ja NK-soluvälitteistä immunotoleranssia Julkaisu IV tarkastelee yksityiskohtaisesti strategioita ja menetelmiä erilaisten yksisoludatatasojen (multi-omiikka) integroimiseksi. Integrointimenetelmät ryhmiteltiin varhaisen, myöhäisen ja välivaiheen strategioihin ja kunkin lähestymistavan menetelmiä esiteltiin tarkemmin. Lisäksi keskusteltiin mahdollisista tulevaisuuden suunnista

    Modeling gene regulatory networks through data integration

    Full text link
    Modeling gene regulatory networks has become a problem of great interest in biology and medical research. Most common methods for learning regulatory dependencies rely on observations in the form of gene expression data. In this dissertation, computational models for gene regulation have been developed based on constrained regression by integrating comprehensive gene expression data for M. tuberculosis with genome-scale ChIP-Seq interaction data. The resulting models confirmed predictive power for expression in independent stress conditions and identified mechanisms driving hypoxic adaptation and lipid metabolism in M. tuberculosis. I then used the regulatory network model for M. tuberculosis to identify factors responding to stress conditions and drug treatments, revealing drug synergies and conditions that potentiate drug treatments. These results can guide and optimize design of drug treatments for this pathogen. I took the next step in this direction, by proposing a new probabilistic framework for learning modular structures in gene regulatory networks from gene expression and protein-DNA interaction data, combining the ideas of module networks and stochastic blockmodels. These models also capture combinatorial interactions between regulators. Comparisons with other network modeling methods that rely solely on expression data, showed the essentiality of integrating ChIP-Seq data in identifying direct regulatory links in M. tuberculosis. Moreover, this work demonstrates the theoretical advantages of integrating ChIP-Seq data for the class of widely-used module network models. The systems approach and statistical modeling presented in this dissertation can also be applied to problems in other organisms. A similar approach was taken to model the regulatory network controlling genes with circadian gene expression in Neurospora crassa, through integrating time-course expression data with ChIP-Seq data. The models explained combinatorial regulations leading to different phase differences in circadian rhythms. The Neurospora crassa network model also works as a tool to manipulate the phases of target genes

    Doctor of Philosophy

    Get PDF
    dissertationLatent structures play a vital role in many data analysis tasks. By providing compact yet expressive representations, such structures can offer useful insights into the complex and high-dimensional datasets encountered in domains such as computational biology, computer vision, natural language processing, etc. Specifying the right complexity of these latent structures for a given problem is an important modeling decision. Instead of using models with an a priori fixed complexity, it is desirable to have models that can adapt their complexity as the data warrant. Nonparametric Bayesian models are motivated precisely based on this desideratum by offering a flexible modeling paradigm for data without limiting the model-complexity a priori. The flexibility comes from the model's ability to adjust its complexity adaptively with data. This dissertation is about nonparametric Bayesian learning of two specific types of latent structures: (1) low-dimensional latent features underlying high-dimensional observed data where the latent features could exhibit interdependencies, and (2) latent task structures that capture how a set of learning tasks relate with each other, a notion critical in the paradigm of Multitask Learning where the goal is to solve multiple learning tasks jointly in order to borrow information across similar tasks. Another focus of this dissertation is on designing efficient approximate inference algorithms for nonparametric Bayesian models. Specifically, for the nonparametric Bayesian latent feature model where the goal is to infer the binary-valued latent feature assignment matrix for a given set of observations, the dissertation proposes two approximate inference methods. The first one is a search-based algorithm to find the maximum-a-posteriori (MAP) solution for the latent feature assignment matrix. The second one is a sequential Monte-Carlo-based approximate inference algorithm that allows processing the data oneexample- at-a-time while being space-efficient in terms of the storage required to represent the posterior distribution of the latent feature assignment matrix

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    corecore