1,266 research outputs found

    Inference of SNP-Gene Regulatory Networks by Integrating Gene Expressions and Genetic Perturbations

    Get PDF
    In order to elucidate the overall relationships between gene expressions and genetic perturbations, we propose a network inference method to infer gene regulatory network where single nucleotide polymorphism (SNP) is involved as a regulator of genes. In the most of the network inferences named as SNP-gene regulatory network (SGRN) inference, pairs of SNP-gene are given by separately performing expression quantitative trait loci (eQTL) mappings. In this paper, we propose a SGRN inference method without predefined eQTL information assuming a gene is regulated by a single SNP at most. To evaluate the performance, the proposed method was applied to random data generated from synthetic networks and parameters. There are three main contributions. First, the proposed method provides both the gene regulatory inference and the eQTL identification. Second, the experimental results demonstrated that integration of multiple methods can produce competitive performances. Lastly, the proposed method was also applied to psychiatric disorder data in order to explore how the method works with real data

    An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli.

    Get PDF
    Given the vast behavioral repertoire and biological complexity of even the simplest organisms, accurately predicting phenotypes in novel environments and unveiling their biological organization is a challenging endeavor. Here, we present an integrative modeling methodology that unifies under a common framework the various biological processes and their interactions across multiple layers. We trained this methodology on an extensive normalized compendium for the gram-negative bacterium Escherichia coli, which incorporates gene expression data for genetic and environmental perturbations, transcriptional regulation, signal transduction, and metabolic pathways, as well as growth measurements. Comparison with measured growth and high-throughput data demonstrates the enhanced ability of the integrative model to predict phenotypic outcomes in various environmental and genetic conditions, even in cases where their underlying functions are under-represented in the training set. This work paves the way toward integrative techniques that extract knowledge from a variety of biological data to achieve more than the sum of their parts in the context of prediction, analysis, and redesign of biological systems

    Using Network Component Analysis to Dissect Regulatory Networks Mediated by Transcription Factors in Yeast

    Get PDF
    Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA) to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs) perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request

    Modeling gene regulatory networks through data integration

    Full text link
    Modeling gene regulatory networks has become a problem of great interest in biology and medical research. Most common methods for learning regulatory dependencies rely on observations in the form of gene expression data. In this dissertation, computational models for gene regulation have been developed based on constrained regression by integrating comprehensive gene expression data for M. tuberculosis with genome-scale ChIP-Seq interaction data. The resulting models confirmed predictive power for expression in independent stress conditions and identified mechanisms driving hypoxic adaptation and lipid metabolism in M. tuberculosis. I then used the regulatory network model for M. tuberculosis to identify factors responding to stress conditions and drug treatments, revealing drug synergies and conditions that potentiate drug treatments. These results can guide and optimize design of drug treatments for this pathogen. I took the next step in this direction, by proposing a new probabilistic framework for learning modular structures in gene regulatory networks from gene expression and protein-DNA interaction data, combining the ideas of module networks and stochastic blockmodels. These models also capture combinatorial interactions between regulators. Comparisons with other network modeling methods that rely solely on expression data, showed the essentiality of integrating ChIP-Seq data in identifying direct regulatory links in M. tuberculosis. Moreover, this work demonstrates the theoretical advantages of integrating ChIP-Seq data for the class of widely-used module network models. The systems approach and statistical modeling presented in this dissertation can also be applied to problems in other organisms. A similar approach was taken to model the regulatory network controlling genes with circadian gene expression in Neurospora crassa, through integrating time-course expression data with ChIP-Seq data. The models explained combinatorial regulations leading to different phase differences in circadian rhythms. The Neurospora crassa network model also works as a tool to manipulate the phases of target genes

    A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology

    Get PDF
    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment
    • …
    corecore