11,561 research outputs found

    Introduction to finite mixtures

    Full text link
    Mixture models have been around for over 150 years, as an intuitively simple and practical tool for enriching the collection of probability distributions available for modelling data. In this chapter we describe the basic ideas of the subject, present several alternative representations and perspectives on these models, and discuss some of the elements of inference about the unknowns in the models. Our focus is on the simplest set-up, of finite mixture models, but we discuss also how various simplifying assumptions can be relaxed to generate the rich landscape of modelling and inference ideas traversed in the rest of this book.Comment: 14 pages, 7 figures, A chapter prepared for the forthcoming Handbook of Mixture Analysis. V2 corrects a small but important typographical error, and makes other minor edits; V3 makes further minor corrections and updates following review; V4 corrects algorithmic details in sec 4.1 and 4.2, and removes typo

    Sequential Bayesian inference for implicit hidden Markov models and current limitations

    Full text link
    Hidden Markov models can describe time series arising in various fields of science, by treating the data as noisy measurements of an arbitrarily complex Markov process. Sequential Monte Carlo (SMC) methods have become standard tools to estimate the hidden Markov process given the observations and a fixed parameter value. We review some of the recent developments allowing the inclusion of parameter uncertainty as well as model uncertainty. The shortcomings of the currently available methodology are emphasised from an algorithmic complexity perspective. The statistical objects of interest for time series analysis are illustrated on a toy "Lotka-Volterra" model used in population ecology. Some open challenges are discussed regarding the scalability of the reviewed methodology to longer time series, higher-dimensional state spaces and more flexible models.Comment: Review article written for ESAIM: proceedings and surveys. 25 pages, 10 figure

    Identifiability and consistent estimation of nonparametric translation hidden Markov models with general state space

    Get PDF
    This paper considers hidden Markov models where the observations are given as the sum of a latent state which lies in a general state space and some independent noise with unknown distribution. It is shown that these fully nonparametric translation models are identifiable with respect to both the distribution of the latent variables and the distribution of the noise, under mostly a light tail assumption on the latent variables. Two nonparametric estimation methods are proposed and we prove that the corresponding estimators are consistent for the weak convergence topology. These results are illustrated with numerical experiments

    Identifiability of parameters in latent structure models with many observed variables

    Full text link
    While hidden class models of various types arise in many statistical applications, it is often difficult to establish the identifiability of their parameters. Focusing on models in which there is some structure of independence of some of the observed variables conditioned on hidden ones, we demonstrate a general approach for establishing identifiability utilizing algebraic arguments. A theorem of J. Kruskal for a simple latent-class model with finite state space lies at the core of our results, though we apply it to a diverse set of models. These include mixtures of both finite and nonparametric product distributions, hidden Markov models and random graph mixture models, and lead to a number of new results and improvements to old ones. In the parametric setting, this approach indicates that for such models, the classical definition of identifiability is typically too strong. Instead generic identifiability holds, which implies that the set of nonidentifiable parameters has measure zero, so that parameter inference is still meaningful. In particular, this sheds light on the properties of finite mixtures of Bernoulli products, which have been used for decades despite being known to have nonidentifiable parameters. In the nonparametric setting, we again obtain identifiability only when certain restrictions are placed on the distributions that are mixed, but we explicitly describe the conditions.Comment: Published in at http://dx.doi.org/10.1214/09-AOS689 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal Population Codes During Spatial Navigation

    Get PDF
    Rodent hippocampal population codes represent important spatial information about the environment during navigation. Several computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. Here we extend our previous work and propose a nonparametric Bayesian approach to infer rat hippocampal population codes during spatial navigation. To tackle the model selection problem, we leverage a nonparametric Bayesian model. Specifically, to analyze rat hippocampal ensemble spiking activity, we apply a hierarchical Dirichlet process-hidden Markov model (HDP-HMM) using two Bayesian inference methods, one based on Markov chain Monte Carlo (MCMC) and the other based on variational Bayes (VB). We demonstrate the effectiveness of our Bayesian approaches on recordings from a freely-behaving rat navigating in an open field environment. We find that MCMC-based inference with Hamiltonian Monte Carlo (HMC) hyperparameter sampling is flexible and efficient, and outperforms VB and MCMC approaches with hyperparameters set by empirical Bayes
    • …
    corecore