217,939 research outputs found

    An Ontology for Defect Detection in Metal Additive Manufacturing

    Full text link
    A key challenge for Industry 4.0 applications is to develop control systems for automated manufacturing services that are capable of addressing both data integration and semantic interoperability issues, as well as monitoring and decision making tasks. To address such an issue in advanced manufacturing systems, principled knowledge representation approaches based on formal ontologies have been proposed as a foundation to information management and maintenance in presence of heterogeneous data sources. In addition, ontologies provide reasoning and querying capabilities to aid domain experts and end users in the context of constraint validation and decision making. Finally, ontology-based approaches to advanced manufacturing services can support the explainability and interpretability of the behaviour of monitoring, control, and simulation systems that are based on black-box machine learning algorithms. In this work, we provide a novel ontology for the classification of process-induced defects known from the metal additive manufacturing literature. Together with a formal representation of the characterising features and sources of defects, we integrate our knowledge base with state-of-the-art ontologies in the field. Our knowledge base aims at enhancing the modelling capabilities of additive manufacturing ontologies by adding further defect analysis terminology and diagnostic inference features

    A virtual environment to support the distributed design of large made-to-order products

    Get PDF
    An overview of a virtual design environment (virtual platform) developed as part of the European Commission funded VRShips-ROPAX (VRS) project is presented. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX (roll-on passengers and cargo) vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products

    An overview of the VRS virtual platform

    Get PDF
    This paper provides an overview of the development of the virtual platform within the European Commission funded VRShips-ROPAX (VRS) project. This project is a major collaboration of approximately 40 industrial, regulatory, consultancy and academic partners with the objective of producing two novel platforms. A physical platform will be designed and produced representing a scale model of a novel ROPAX vessel with the following criteria: 2000 passengers; 400 cabins; 2000 nautical mile range, and a service speed of 38 knots. The aim of the virtual platform is to demonstrate that vessels may be designed to meet these criteria, which was not previously possible using individual tools and conventional design approaches. To achieve this objective requires the integration of design and simulation tools representing concept, embodiment, detail, production, and operation life-phases into the virtual platform, to enable distributed design activity to be undertaken. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products
    • …
    corecore