79,021 research outputs found

    Topological properties and organizing principles of semantic networks

    Full text link
    Interpreting natural language is an increasingly important task in computer algorithms due to the growing availability of unstructured textual data. Natural Language Processing (NLP) applications rely on semantic networks for structured knowledge representation. The fundamental properties of semantic networks must be taken into account when designing NLP algorithms, yet they remain to be structurally investigated. We study the properties of semantic networks from ConceptNet, defined by 7 semantic relations from 11 different languages. We find that semantic networks have universal basic properties: they are sparse, highly clustered, and many exhibit power-law degree distributions. Our findings show that the majority of the considered networks are scale-free. Some networks exhibit language-specific properties determined by grammatical rules, for example networks from highly inflected languages, such as e.g. Latin, German, French and Spanish, show peaks in the degree distribution that deviate from a power law. We find that depending on the semantic relation type and the language, the link formation in semantic networks is guided by different principles. In some networks the connections are similarity-based, while in others the connections are more complementarity-based. Finally, we demonstrate how knowledge of similarity and complementarity in semantic networks can improve NLP algorithms in missing link inference

    Collaborative Training in Sensor Networks: A graphical model approach

    Full text link
    Graphical models have been widely applied in solving distributed inference problems in sensor networks. In this paper, the problem of coordinating a network of sensors to train a unique ensemble estimator under communication constraints is discussed. The information structure of graphical models with specific potential functions is employed, and this thus converts the collaborative training task into a problem of local training plus global inference. Two important classes of algorithms of graphical model inference, message-passing algorithm and sampling algorithm, are employed to tackle low-dimensional, parametrized and high-dimensional, non-parametrized problems respectively. The efficacy of this approach is demonstrated by concrete examples

    Statistical inference framework for source detection of contagion processes on arbitrary network structures

    Get PDF
    In this paper we introduce a statistical inference framework for estimating the contagion source from a partially observed contagion spreading process on an arbitrary network structure. The framework is based on a maximum likelihood estimation of a partial epidemic realization and involves large scale simulation of contagion spreading processes from the set of potential source locations. We present a number of different likelihood estimators that are used to determine the conditional probabilities associated to observing partial epidemic realization with particular source location candidates. This statistical inference framework is also applicable for arbitrary compartment contagion spreading processes on networks. We compare estimation accuracy of these approaches in a number of computational experiments performed with the SIR (susceptible-infected-recovered), SI (susceptible-infected) and ISS (ignorant-spreading-stifler) contagion spreading models on synthetic and real-world complex networks
    • …
    corecore