342 research outputs found

    Optimization and Applications

    Get PDF
    Proceedings of a workshop devoted to optimization problems, their theory and resolution, and above all applications of them. The topics covered existence and stability of solutions; design, analysis, development and implementation of algorithms; applications in mechanics, telecommunications, medicine, operations research

    Irregular grid methods for pricing high-dimensional American options

    Get PDF
    This thesis proposes and studies numerical methods for pricing high-dimensional American options; important examples being basket options, Bermudan swaptions and real options. Four new methods are presented and analysed, both in terms of their application to various test problems, and in terms of their theoretical stability and convergence properties. A method using matrix roots (Chapter 2) and a method using local consistency conditions (Chapter 4) are found to be stable and to give accurate solutions, in up to ten dimensions for the latter case. A method which uses local quadratic functions to approximate the value function (Chapter 3) is found to be vulnerable to instabilities in two dimensions, and thus not suitable for high-dimensional problems. A proof of convergence related to these methods is provided in Chapter 6. Finally, a method based on interpolation of the value function (Chapter 5) is found to be effective in pricing Bermudan swaptions.

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Irregular Grid Methods for Pricing High-Dimensional American Options.

    Get PDF
    This thesis proposes and studies numerical methods for pricing high-dimensional American options; important examples being basket options, Bermudan swaptions and real options. Four new methods are presented and analysed, both in terms of their application to various test problems, and in terms of their theoretical stability and convergence properties. A method using matrix roots (Chapter 2) and a method using local consistency conditions (Chapter 4) are found to be stable and to give accurate solutions, in up to ten dimensions for the latter case. A method which uses local quadratic functions to approximate the value function (Chapter 3) is found to be vulnerable to instabilities in two dimensions, and thus not suitable for high-dimensional problems. A proof of convergence related to these methods is provided in Chapter 6. Finally, a method based on interpolation of the value function (Chapter 5) is found to be effective in pricing Bermudan swaptions.

    Risk-Averse Trajectory Optimization via Sample Average Approximation

    Full text link
    Trajectory optimization under uncertainty underpins a wide range of applications in robotics. However, existing methods are limited in terms of reasoning about sources of epistemic and aleatoric uncertainty, space and time correlations, nonlinear dynamics, and non-convex constraints. In this work, we first introduce a continuous-time planning formulation with an average-value-at-risk constraint over the entire planning horizon. Then, we propose a sample-based approximation that unlocks an efficient, general-purpose, and time-consistent algorithm for risk-averse trajectory optimization. We prove that the method is asymptotically optimal and derive finite-sample error bounds. Simulations demonstrate the high speed and reliability of the approach on problems with stochasticity in nonlinear dynamics, obstacle fields, interactions, and terrain parameters

    Application of general semi-infinite Programming to Lapidary Cutting Problems

    Get PDF
    We consider a volume maximization problem arising in gemstone cutting industry. The problem is formulated as a general semi-infinite program (GSIP) and solved using an interiorpoint method developed by Stein. It is shown, that the convexity assumption needed for the convergence of the algorithm can be satisfied by appropriate modelling. Clustering techniques are used to reduce the number of container constraints, which is necessary to make the subproblems practically tractable. An iterative process consisting of GSIP optimization and adaptive refinement steps is then employed to obtain an optimal solution which is also feasible for the original problem. Some numerical results based on realworld data are also presented

    Black box simulation optimization:Generalized response surface methodology

    Get PDF
    The thesis consists of three papers in the area of Response Surface Methodology (RSM). The first paper deals with optimization problems with a single random objective. The contributions of that paper are a scale independent search direction and possible solutions for the step size. The second paper considers optimization problems with a single random objective and multiple random constraints, as well as deterministic box constraints. That paper extends RSM to cope with constraints, using ideas from interior point methods. Furthermore, it provides a heuristic to reach quickly a neighborhood of the optimum. The third paper copes with optimization problems with a single random objective and multiple random constraints. The contribution of that paper is an asymptotic stopping rule that tests the first-order necessary optimality conditions at a feasible point.
    corecore