482 research outputs found

    An Autonomous Decentralized Supply Chain Planning and Scheduling System

    Get PDF

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed

    Integrated machine learning and optimization approaches

    Get PDF
    This dissertation focuses on the integration of machine learning and optimization. Specifically, novel machine learning-based frameworks are proposed to help solve a broad range of well-known operations research problems to reduce the solution times. The first study presents a bidirectional Long Short-Term Memory framework to learn optimal solutions to sequential decision-making problems. Computational results show that the framework significantly reduces the solution time of benchmark capacitated lot-sizing problems without much loss in feasibility and optimality. Also, models trained using shorter planning horizons can successfully predict the optimal solution of the instances with longer planning horizons. For the hardest data set, the predictions at the 25% level reduce the solution time of 70 CPU hours to less than 2 CPU minutes with an optimality gap of 0.8% and without infeasibility. In the second study, an extendable prediction-optimization framework is presented for multi-stage decision-making problems to address the key issues of sequential dependence, infeasibility, and generalization. Specifically, an attention-based encoder-decoder neural network architecture is integrated with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions. The proposed framework is demonstrated to tackle the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing and multi-dimensional knapsack. The results show that models trained on shorter and smaller-dimension instances can be successfully used to predict longer and larger-dimension problems with the presented item-wise expansion algorithm. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. The proposed framework can be advantageous for solving dynamic mixed-integer programming problems that need to be solved instantly and repetitively. In the third study, a deep reinforcement learning-based framework is presented for solving scenario-based two-stage stochastic programming problems, which are computationally challenging to solve. A general two-stage deep reinforcement learning framework is proposed where two learning agents sequentially learn to solve each stage of a general two-stage stochastic multi-dimensional knapsack problem. The results show that solution time can be reduced significantly with a relatively small gap. Additionally, decision-making agents can be trained with a few scenarios and solve problems with a large number of scenarios. In the fourth study, a learning-based prediction-optimization framework is proposed for solving scenario-based multi-stage stochastic programs. The issue of non-anticipativity is addressed with a novel neural network architecture that is based on a neural machine translation system. Furthermore, training the models on deterministic problems is suggested instead of solving hard and time-consuming stochastic programs. In this framework, the level of variables used for the solution is iteratively reduced to eliminate infeasibility, and a heuristic based on a linear relaxation is performed to reduce the solution time. An improved item-wise expansion strategy is introduced to generalize the algorithm to tackle instances with different sizes. The results are presented in solving stochastic multi-item capacitated lot-sizing and stochastic multi-stage multi-dimensional knapsack problems. The results show that the solution time can be reduced by a factor of 599 with an optimality gap of only 0.08%. Moreover, results demonstrate that the models can be used to predict similarly structured stochastic programming problems with a varying number of periods, items, and scenarios. The frameworks presented in this dissertation can be utilized to achieve high-quality and fast solutions to repeatedly-solved problems in various industrial and business settings, such as production and inventory management, capacity planning, scheduling, airline logistics, dynamic pricing, and emergency management

    Handling Uncertainties in Process Optimization

    Get PDF
    Esta tesis doctoral presenta el estudio de técnicas que permiten manejar las incertidumbres en la optimización de procesos, desde el punto de vista del comportamiento aleatorio de las variables y de los errores en los modelos utilizados en la optimización. Para el tratamiento de las variables inciertas, se presenta la aplicación de la Programación de dos Etapas y Optimización Probabilística a un proceso de hidrodesulfuración. Los resultados permiten asegurar factibilidad en la operación, independiente del valor que tome la variable aleatoria dentro de su distribución de probabilidad. Acerca del manejo de la incertidumbre derivada del conocimiento parcial del proceso, se ha estudiado el método de Optimización en Tiempo Real con adaptación de modificadores, proponiendo mejoras que permiten: (1) evitar infactibilidades en su evolución, (2) obtener el óptimo real del proceso sin necesidad de estimar sus gradientes y (3) identificar las limitaciones para su aplicación en sistemas dinámicos de horizonteDepartamento de Ingeniería de Sistemas y Automátic

    An Integrated Solution Approach for Flow Shop Scheduling

    Get PDF
    This study seeks to integrate Random Key Genetic Algorithm (RKGA) and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) to compute makespan and solve the Flow Shop Scheduling Problem (FSSP). FSSP is considered as a Multi Criteria Decision Making Problem (MCDM) by setting machines as criteria and jobs as alternatives. RKGA is employed to determine the best weights for the criteria that directly affect the robustness of the solution. The proposed methodology is presented with illustrative example and applied to benchmark problems. The solutions are compared to well-known construction heuristics. The proposed methodology provides the best or reasonable solutions in acceptable computational times

    Optimization under Uncertainty: Machine Learning Approach

    Get PDF
    Data is the new oil. From the beginning of the 21st century, data is similar to what oil was in the 18th century, an immensely untapped valuable asset. This paper reviews recent advances in the field of optimization under uncertainty via a modern data lens and highlights key research challenges and the promise of data-driven optimization that organically integrates machine learning and mathematical programming for decision-making under uncertainty. A brief review of classical mathematical programming techniques for hedging against uncertainty is first presented, along with their wide spectrum of applications in Process Systems Engineering. we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems, and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments

    A matheuristic for customized multi-level multi-criteria university timetabling

    Get PDF
    Course timetables are the organizational foundation of a university’s educational program. While students and lecturers perceive timetable quality individually according to their preferences, there are also collective criteria derived normatively such as balanced workloads or idle time avoidance. A recent challenge and opportunity in curriculum-based timetabling consists of customizing timetables with respect to individual student preferences and with respect to integrating online courses as part of modern course programs or in reaction to flexibility requirements as posed in pandemic situations. Curricula consisting of (large) lectures and (small) tutorials further open the possibility for optimizing not only the lecture and tutorial plan for all students but also the assignments of individual students to tutorial slots. In this paper, we develop a multi-level planning process for university timetabling: On the tactical level, a lecture and tutorial plan is determined for a set of study programs; on the operational level, individual timetables are generated for each student interlacing the lecture plan through a selection of tutorials from the tutorial plan favoring individual preferences. We utilize this mathematical-programming-based planning process as part of a matheuristic which implements a genetic algorithm in order to improve lecture plans, tutorial plans, and individual timetables so as to find an overall university program with well-balanced timetable performance criteria. Since the evaluation of the fitness function amounts to invoking the entire planning process, we additionally provide a proxy in the form of an artificial neural network metamodel. Computational results exhibit the procedure’s capability of generating high quality schedules
    corecore