207 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Multiobjective differential evolution based on fuzzy performance feedback: Soft constraint handling and its application in antenna designs

    Get PDF
    The recently emerging Differential Evolution is considered one of the most powerful tools for solving optimization problems. It is a stochastic population-based search approach for optimization over the continuous space. The main advantages of differential evolution are simplicity, robustness and high speed of convergence. Differential evolution is attractive to researchers all over the world as evidenced by recent publications. There are many variants of differential evolution proposed by researchers and differential evolution algorithms are continuously improved in its performance. Performance of differential evolution algorithms depend on the control parameters setting which are problem dependent and time-consuming task. This study proposed a Fuzzy-based Multiobjective Differential Evolution (FMDE) that exploits three performance metrics, specifically hypervolume, spacing, and maximum spread, to measure the state of the evolution process. We apply the fuzzy inference rules to these metrics in order to adaptively adjust the associated control parameters of the chosen mutation strategy used in this algorithm. The proposed FMDE is evaluated on the well known ZDT, DTLZ, and WFG benchmark test suites. The experimental results show that FMDE is competitive with respect to the chosen state-of-the-art multiobjective evolutionary algorithms. The advanced version of FMDE with adaptive crossover rate (AFMDE) is proposed. The proof of concept AFMDE is then applied specifically to the designs of microstrip antenna array. Furthermore, the soft constraint handling technique incorporates with AFMDE is proposed. Soft constraint AFMDE is evaluated on the benchmark constrained problems. AFMDE with soft constraint handling technique is applied to the constrained non-uniform circular antenna array design problem as a case study

    Advances in Data-Driven Modeling and Global Optimization of Constrained Grey-Box Computational Systems

    Get PDF
    The effort to mimic a chemical plant’s operations or to design and operate a completely new technology in silico is a highly studied research field under process systems engineering. As the rising computation power allows us to simulate and model systems in greater detail through careful consideration of the underlying phenomena, the increasing use of complex simulation software and generation of multi-scale models that spans over multiple length and time scales calls for computationally efficient solution strategies that can handle problems with different complexities and characteristics. This work presents theoretical and algorithmic advancements for a range of challenging classes of mathematical programming problems through introducing new data-driven hybrid modeling and optimization strategies. First, theoretical and algorithmic advances for bi-level programming, multi-objective optimization, problems containing stiff differential algebraic equations, and nonlinear programming problems are presented. Each advancement is accompanied with an application from the grand challenges faced in the engineering domain including, food-energy-water nexus considerations, energy systems design with economic and environmental considerations, thermal cracking of natural gas liquids, and oil production optimization. Second, key modeling challenges in environmental and biomedical systems are addressed through employing advanced data analysis techniques. Chemical contaminants created during environmental emergencies, such as hurricanes, pose environmental and health related risks for exposure. The goal of this work is to alleviate challenges associated with understanding contaminant characteristics, their redistribution, and their biological potential through the use of data analytics

    Design Techniques of Energy Efficient PLL for Enhanced Noise and Lock Performance

    Get PDF
    Phase locked loops(PLLs)are vital building blocks of communication sys-tems whose performance dictates the quality of communication.The design of PLL to o_er superior performance is the prime objective of this research.It is desirable for the PLL to have fast locking,low noise,low reference spur,wide lock range,low power consumption consuming less silicon area.To achieve these performance parameters simultaneously in a PLL being a challenging task is taken up as a scope of the present work.A comprehensive study of the performance linked PLL components along with their design challenges is made in this report.The phase noise which is directly related to the dead zone of the PLL is minimized using an e_cient phase frequency detector(PFD)in this thesis.Here a voltage variable delay element is inserted in the reset path of the PFD to reduce the dead zone.An adaptive PFD architecture is also proposed to have a low noise and fast PLL simultaneously.In this work,before locking a fast PFD and in the locked state a low noise PFD operates to dictate the phase di_erence of the reference and feedback signals.To reduce the reference spur,a novel charge pump architecture is proposed which eventually reduces the lock time up to a great extent.In this charge pump a single current source is employed to reduce the output current mis-match and transmission gates are used to reduce the non ideal e_ects.Besides this,the fabrication process variations have a predominant e_ect on the PLL performance,which is directly linked to the locking capability.This necessitates a manufacturing process variation tolerant design of the PLL.In this work an e_cient multi-objective optimization method is also applied to at-tain multiple optimal performance objectives.The major performances under consideration are lock time,phase noise,lock range and power consumption

    Integrated machine learning and optimization approaches

    Get PDF
    This dissertation focuses on the integration of machine learning and optimization. Specifically, novel machine learning-based frameworks are proposed to help solve a broad range of well-known operations research problems to reduce the solution times. The first study presents a bidirectional Long Short-Term Memory framework to learn optimal solutions to sequential decision-making problems. Computational results show that the framework significantly reduces the solution time of benchmark capacitated lot-sizing problems without much loss in feasibility and optimality. Also, models trained using shorter planning horizons can successfully predict the optimal solution of the instances with longer planning horizons. For the hardest data set, the predictions at the 25% level reduce the solution time of 70 CPU hours to less than 2 CPU minutes with an optimality gap of 0.8% and without infeasibility. In the second study, an extendable prediction-optimization framework is presented for multi-stage decision-making problems to address the key issues of sequential dependence, infeasibility, and generalization. Specifically, an attention-based encoder-decoder neural network architecture is integrated with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions. The proposed framework is demonstrated to tackle the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing and multi-dimensional knapsack. The results show that models trained on shorter and smaller-dimension instances can be successfully used to predict longer and larger-dimension problems with the presented item-wise expansion algorithm. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. The proposed framework can be advantageous for solving dynamic mixed-integer programming problems that need to be solved instantly and repetitively. In the third study, a deep reinforcement learning-based framework is presented for solving scenario-based two-stage stochastic programming problems, which are computationally challenging to solve. A general two-stage deep reinforcement learning framework is proposed where two learning agents sequentially learn to solve each stage of a general two-stage stochastic multi-dimensional knapsack problem. The results show that solution time can be reduced significantly with a relatively small gap. Additionally, decision-making agents can be trained with a few scenarios and solve problems with a large number of scenarios. In the fourth study, a learning-based prediction-optimization framework is proposed for solving scenario-based multi-stage stochastic programs. The issue of non-anticipativity is addressed with a novel neural network architecture that is based on a neural machine translation system. Furthermore, training the models on deterministic problems is suggested instead of solving hard and time-consuming stochastic programs. In this framework, the level of variables used for the solution is iteratively reduced to eliminate infeasibility, and a heuristic based on a linear relaxation is performed to reduce the solution time. An improved item-wise expansion strategy is introduced to generalize the algorithm to tackle instances with different sizes. The results are presented in solving stochastic multi-item capacitated lot-sizing and stochastic multi-stage multi-dimensional knapsack problems. The results show that the solution time can be reduced by a factor of 599 with an optimality gap of only 0.08%. Moreover, results demonstrate that the models can be used to predict similarly structured stochastic programming problems with a varying number of periods, items, and scenarios. The frameworks presented in this dissertation can be utilized to achieve high-quality and fast solutions to repeatedly-solved problems in various industrial and business settings, such as production and inventory management, capacity planning, scheduling, airline logistics, dynamic pricing, and emergency management

    Data-Driven Mixed-Integer Optimization for Modular Process Intensification

    Get PDF
    High-fidelity computer simulations provide accurate information on complex physical systems. These often involve proprietary codes, if-then operators, or numerical integrators to describe phenomena that cannot be explicitly captured by physics-based algebraic equations. Consequently, the derivatives of the model are either absent or too complicated to compute; thus, the system cannot be directly optimized using derivative-based optimization solvers. Such problems are known as “black-box” systems since the constraints and the objective of the problem cannot be obtained as closed-form equations. One promising approach to optimize black-box systems is surrogate-based optimization. Surrogate-based optimization uses simulation data to construct low-fidelity approximation models. These models are optimized to find an optimal solution. We study several strategies for surrogate-based optimization for nonlinear and mixed-integer nonlinear black-box problems. First, we explore several types of surrogate models, ranging from simple subset selection for regression models to highly complex machine learning models. Second, we propose a novel surrogate-based optimization algorithm for black-box mixed-integer nonlinear programming problems. The algorithm systematically employs data-preprocessing techniques, surrogate model fitting, and optimization-based adaptive sampling to efficiently locate the optimal solution. Finally, a case study on modular carbon capture is presented. Simultaneous process optimization and adsorbent selection are performed to determine the optimal module design. An economic analysis is presented to determine the feasibility of a proposed modular facility.Ph.D

    Extended Trust-Tech Methodology For Nonlinear Optimization: Analyses, Methods And Applications

    Full text link
    Many theoretical and practical problems can be formulated as a global optimization problem. Traditional local optimization methods can only attain a local optimal solution and be entrapped in the local optimal solution; while existing global optimization algorithms usually sparsely approximates the global optimal solution in a stochastic manner. In contrast, the transformation under stability-retaining equilibrium characterization (TRUST-TECH) methodology prevails over existing algorithms due to its capability of locating multiple, if not all, local optimal solutions to the optimization problem deterministically and systematically in a tier-by-tier manner. The TRUST-TECH methodology was developed to solve unconstrained and constrained nonlinear optimization problems. This work extends the TRUST-TECH methodology by incorporating new analytical results, developing new solution methods and solving new problems in practical applications. This work first provides analytical results regarding the invariance of partial stability region in quasi-gradient systems. Our motivation is to resolve numerical difficulties arising in implementations of trajectory based methods, including TRUST-TECH. Improved algorithms were developed to resolve these issues by altering the original problem to speed-up movement of the trajectory. However, such operations can lead the trajectory converge to a different solution, which could be undesired under specific situations. This work attempts to answer the question regarding invariant convergence for a special class of numerical operations whose dynamical behaviours can be characterized by a quasi-gradient dynamical system. To this end, we study relationship between a gradient dynamical system and its associated quasi-gradient system and reveal the invariance of partial stability region in the quasi-gradient system. These analytical results lead to methods for checking invariant convergence of the trajectory starting from a given point in the quasi-gradient system and the algorithm to maintain invariant convergence. This work also develops new solution methods to enhance TRUST-TECH's capability of solving constrained nonlinear optimization problems and applies them to solve practical problems arising in different applications. Specifically, TRUST-TECH based methods are first developed for feasibility computation and restoration and are applied to power system applications, including power flow computation and feasibility restoration for infeasible optimal power flow problems. Indeed, a unified framework based on TRUST-TECH is introduced for analysing feasibility and infeasibility for nonlinear problems. Secondly, the TRUST-TECH based interior point method (TT-IPM) and the reduced projected gradient method are developed to better tackle constrained nonlinear optimization problems. As application, the TT-IPM method is used to solve mixed-integer nonlinear programs (MINLPs). Finally, this work develops the ensemble of optimal, input-pruned neural networks using TRUST-TECH (ELITE) method for constructing high-quality neural network ensembles and applies ELITE to build a short-term load forecaster named ELITE-STLF with promising performance. Possible extensions of the TRUST-TECH methodology to a much broader range of optimization models, including multi-objective optimization and variational optimization, are suggested for future research efforts

    Topology Optimization via Machine Learning and Deep Learning: A Review

    Full text link
    Topology optimization (TO) is a method of deriving an optimal design that satisfies a given load and boundary conditions within a design domain. This method enables effective design without initial design, but has been limited in use due to high computational costs. At the same time, machine learning (ML) methodology including deep learning has made great progress in the 21st century, and accordingly, many studies have been conducted to enable effective and rapid optimization by applying ML to TO. Therefore, this study reviews and analyzes previous research on ML-based TO (MLTO). Two different perspectives of MLTO are used to review studies: (1) TO and (2) ML perspectives. The TO perspective addresses "why" to use ML for TO, while the ML perspective addresses "how" to apply ML to TO. In addition, the limitations of current MLTO research and future research directions are examined
    corecore