4 research outputs found

    Apprentissage de la structure de réseaux bayésiens : application aux données de génétique-génomique

    Get PDF
    Apprendre la structure d'un réseau de régulation de gènes est une tâche complexe due à la fois au nombre élevé de variables le composant (plusieurs milliers) et à la faible quantité d'échantillons disponibles (quelques centaines). Parmi les approches proposées, nous utilisons le formalisme des réseaux bayésiens, ainsi apprendre la structure d'un réseau de régulation consiste à apprendre la structure d'un réseau bayésien où chaque variable représente un gène et chaque arc un phénomène de régulation. Dans la première partie de ce manuscrit nous nous intéressons à l'apprentissage de la structure de réseaux bayésiens génériques au travers de recherches locales. Nous explorons plus efficacement l'espace des réseaux possibles grâce à un nouvel algorithme de recherche stochastique (SGS), un nouvel opérateur local (SWAP), ainsi qu'une extension des opérateurs classiques qui permet d'assouplir temporairement la contrainte d'acyclicité des réseaux bayésiens. La deuxième partie se focalise sur l'apprentissage de réseaux de régulation de gènes. Nous proposons une modélisation du problème dans le cadre des réseaux bayésiens prenant en compte deux types d'information. Le premier, classiquement utilisé, est le niveau d'expression des gènes. Le second, plus original, est la présence de mutations sur la séquence d'ADN pouvant expliquer des variations d'expression. L'utilisation de ces données combinées dites de génétique-génomique, vise à améliorer la reconstruction. Nos différentes propositions se sont montrées performantes sur des données de génétique-génomique simulées et ont permis de reconstruire un réseau de régulation pour des données observées sur le plante Arabidopsis thaliana.Structure learning of gene regulatory networks is a complex process, due to the high number of variables (several thousands) and the small number of available samples (few hundred). Among the proposed approaches to learn these networks, we use the Bayesian network framework. In this way to learn a regulatory network corresponds to learn the structure of a Bayesian network where each variable is a gene and each edge represents a regulation between genes. In the first part of this thesis, we are interested in learning the structure of generic Bayesian networks using local search. We explore more efficiently the search space thanks to a new stochastic search algorithm (SGS), a new local operator (SWAP) and an extension for classical operators to briefly overcome the acyclic constraint imposed by Bayesian networks. The second part focuses on learning gene regulatory networks. We proposed a model in the Bayesian networks framework taking into account two kinds of information. The first one, commonly used, is gene expression levels. The second one, more original, is the mutations on the DNA sequence which can explain gene expression variations. The use of these combined data, called genetical genomics, aims to improve the structural learning quality. Our different proposals appeared to be efficient on simulated genetical genomics data and allowed to learn a regulatory network for observed data from Arabidopsis thaliana

    Apprentissage du contrôle de systèmes complexes par l'auto-organisation coopérative d'un système multi-agent: Application à la calibration de moteurs à combustion

    Get PDF
    This thesis tackles the problem of complex systems control with a multi-agent approach. Controlling a system means applying the adequate actions on its inputs, in order to put the system in a desired state. Usual methods are based on analytical models of the controlled system. They find their limits with complex systems, because of the non-linear dynamics. Building a model of this kind of system is indeed very difficult, and exploiting such a model is even harder. A better approach is to learn how to control, without having to exploit any model. But Ashby's Law taught us that the controller must be at least as complex as the controlled system. A part of the challenge is to build a complex system with the correct functionnality.This challenge is tackled with the Adaptive Multi-Agent Systems (AMAS) approach, which relies on cooperation and emergence to design adaptive multi-agent systems able to perform complex tasks.Cette thèse s'intéresse au contrôle de systèmes complexes, et propose une solution multi-agent.Contrôler un système, c'est appliquer les modifications adéquates sur ses entrées de façon à placer ses sorties dans un état attendu. Les méthodes habituelles se basent majoritairement sur l'utilisation de modèles mathématiques du système contrôlé, afin de calculer les actions de contrôle à effectuer. Ces méthodes trouvent leurs limites face aux systèmes complexes, qui ont une dynamique non-linéaire, et sont souvent bruités et instables. La construction d'un modèle est dans ce cas une tâche ardue, qui peut s'étendre sur plusieurs années. La plupart des méthodes proposent alors d'utiliser un algorithme d'apprentissage artificiel pour apprendre un modèle. Cependant, le modèle produit demeure difficile à exploiter pour le contrôle, puisqu'il reproduit les caractéristiques difficiles du système réel, notamment sa non-linéarité. Une meilleure approche, adoptée dans cette thèse, consiste à apprendre directement le contrôle. La loi de la variété requise indique que, pour être capable d'accomplir sa tâche, le contrôleur doit être au moins aussi complexe que le système contrôlé. Il faut donc concevoir un système capable d'apprendre, de contrôler, et surtout, de franchir le mur de la complexité.La distribution du contrôle, c'est-à-dire l'affectation du contrôle de chaque entrée d'un système à des contrôleurs plus ou moins indépendants, permet de s'attaquer à la complexité. Mais cela demeure un sujet de recherche actif, à plus forte raison lorsque vient s'ajouter une problématique d'apprentissage. Les systèmes multi-agents (SMA), composés d'entités autonomes, se prêtent naturellement aux problèmes distribués et peuvent ainsi beaucoup apporter. En particulier, les systèmes multi-agents adaptatifs (AMAS) s'appuient sur l'auto-organisation des agents pour faire émerger une fonction globale adéquate. Cette auto-organisation est guidée par la coopération. Chaque agent est capable de détecter et de résoudre les situations dans lesquelles il ne peut accomplir sa tâche. Un AMAS est ainsi doté de fortes capacités d'adaptation et d'apprentissage. Il est également capable, grâce à l'émergence, d'accomplir des tâches complexes. Appliquée au problème du contrôle et de son apprentissage, cette approche conduit à la définition d'un SMA particulier, présenté dans cette thèse. Les expérimentations, menées sur des simulations ainsi qu'en situation réelle (sur un moteur à combustion), ont montré la capacité du système à apprendre le contrôle de plusieurs entrées en fonction de critères sur plusieurs sorties, tout en étant robuste aux perturbations, et facile à instancier. Ces résultats sont analysés pour conclure sur la validité du système

    Inférence de réseaux de régulation de gènes au travers de scores étendus dans les réseaux bayésiens

    No full text
    Inferring gene regulatory networks tends to use several biological information. Here we use data from genetic markers and expression data in the framework of discrete static bayesian networks. We compare several scores and also the impact of a network connectivity a priori. We propose and compare two models with existing approaches of gene regulatory network inference. On simulated data one of our models reached better results in the case of small sample size. We use this model on real data in Arabidopsis thaliana.L’inférence de réseaux de régulation de gènes s’oriente actuellement vers l’utilisation conjointe d’informations biologiques complémentaires. Nous utilisons ici des données de marqueurs génétiques en plus des classiques données d’expression dans le cadre des réseaux bayésiens statiques discrets. Nous comparons les qualités de différents scores ainsi que l’impact d’un a priori lié à la connectivité des réseaux. Nous proposons et comparons deux modélisations aux approches existantes pour l’inférence de réseaux de régulation. Sur des données simulées, l’un de nos modèles obtient les meilleurs résultats dans le cas d’échantillons de petites tailles. Nous utilisons ce même modèle sur des données réelles d’Arabidopsis thaliana
    corecore