89 research outputs found

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Lecture 07: Nonlinear Preconditioning Methods and Applications

    Get PDF
    We consider solving system of nonlinear algebraic equations arising from the discretization of partial differential equations. Inexact Newton is a popular technique for such problems. When the nonlinearities in the system are well-balanced, Newton\u27s method works well, but when a small number of nonlinear functions in the system are much more nonlinear than the others, Newton may converge slowly or even stagnate. In such a situation, we introduce some nonlinear preconditioners to balance the nonlinearities in the system. The preconditioners are often constructed using a combination of some domain decomposition methods and nonlinear elimination methods. For the nonlinearly preconditioned problem, we show that fast convergence can be restored. In this talk we first review the basic algorithms, and then discuss some recent progress in the applications of nonlinear preconditioners for some difficult problems arising in computational mechanics including both fluid dynamics and solid mechanics

    Nonlinear Schwarz preconditioning for nonlinear optimization problems with bound constraints

    Full text link
    We propose a nonlinear additive Schwarz method for solving nonlinear optimization problems with bound constraints. Our method is used as a "right-preconditioner" for solving the first-order optimality system arising within the sequential quadratic programming (SQP) framework using Newton's method. The algorithmic scalability of this preconditioner is enhanced by incorporating a solution-dependent coarse space, which takes into account the restricted constraints from the fine level. By means of numerical examples, we demonstrate that the proposed preconditioned Newton methods outperform standard active-set methods considered in the literature

    Solution strategies for nonlinear conservation laws

    Get PDF
    Nonlinear conservation laws form the basis for models for a wide range of physical phenomena. Finding an optimal strategy for solving these problems can be challenging, and a good strategy for one problem may fail spectacularly for others. As different problems have different challenging features, exploiting knowledge about the problem structure is a key factor in achieving an efficient solution strategy. Most strategies found in literature for solving nonlinear problems involve a linearization step, usually using Newton's method, which replaces the original nonlinear problem by an iteration process consisting of a series of linear problems. A large effort is then spent on finding a good strategy for solving these linear problems. This involves choosing suitable preconditioners and linear solvers. This approach is in many cases a good choice and a multitude of different methods have been developed. However, the linearization step to some degree involves a loss of information about the original problem. This is not necessarily critical, but in many cases the structure of the nonlinear problem can be exploited to a larger extent than what is possible when working solely on the linearized problem. This may involve knowledge about dominating physical processes and specifically on whether a process is near equilibrium. By using nonlinear preconditioning techniques developed in recent years, certain attractive features such as automatic localization of computations to parts of the problem domain with the highest degree of nonlinearities arise. In the present work, these methods are further refined to obtain a framework for nonlinear preconditioning that also takes into account equilibrium information. This framework is developed mainly in the context of porous media, but in a general manner, allowing for application to a wide range of problems. A scalability study shows that the method is scalable for challenging two-phase flow problems. It is also demonstrated for nonlinear elasticity problems. Some models arising from nonlinear conservation laws are best solved using completely different strategies than the approach outlined above. One such example can be found in the field of surface gravity waves. For special types of nonlinear waves, such as solitary waves and undular bores, the well-known Korteweg-de Vries (KdV) equation has been shown to be a suitable model. This equation has many interesting properties not typical of nonlinear equations which may be exploited in the solver, and strategies usually reserved to linear problems may be applied. In this work includes a comparative study of two discretization methods with highly different properties for this equation

    Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning

    Get PDF
    Iterative substructuring Domain Decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. It is less known that classical overlapping DD methods can also be formulated in substructured form, i.e., as iterative methods acting on variables defined exclusively on the interfaces of the overlapping domain decomposition. We call such formulations substructured domain decomposition methods. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS. We show that RAS and SRAS are equivalent when used as iterative solvers, as they produce the same iterates, while they are substantially different when used as preconditioners for GMRES. We link the volume and substructured Krylov spaces and show that the iterates are different by deriving the least squares problems solved at each GMRES iteration. When used as iterative solvers, SRAS presents computational advantages over RAS, as it avoids computations with matrices and vectors at the volume level. When used as preconditioners, SRAS has the further advantage of allowing GMRES to store smaller vectors and perform orthogonalization in a lower dimensional space. We then consider nonlinear problems, and we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton’s method. In contrast to the linear case, we prove that Newton’s method applied to the preconditioned volume and substructured formulation produces the same iterates in the nonlinear case. Next, we introduce two-level versions of nonlinear SRAS and SRASPEN. Finally, we validate our theoretical results with numerical experiments

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    Multilevel techniques for Reservoir Simulation

    Get PDF

    Domain decomposition preconditioners for higher-order discontinuous Galerkin discretizations

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, February 2012."September 2011." Cataloged from PDF version of thesis.Includes bibliographical references (p. 147-155).Aerodynamic flows involve features with a wide range of spatial and temporal scales which need to be resolved in order to accurately predict desired engineering quantities. While computational fluid dynamics (CFD) has advanced considerably in the past 30 years, the desire to perform more complex, higher-fidelity simulations remains. Present day CFD simulations are limited by the lack of an efficient high-fidelity solver able to take advantage of the massively parallel architectures of modern day supercomputers. A higher-order hybridizable discontinuous Galerkin (HDG) discretization combined with an implicit solution method is proposed as a means to attain engineering accuracy at lower computational cost. Domain decomposition methods are studied for the parallel solution of the linear system arising at each iteration of the implicit scheme. A minimum overlapping additive Schwarz (ASM) preconditioner and a Balancing Domain Decomposition by Constraints (BDDC) preconditioner are developed for the HDG discretization. An algebraic coarse space for the ASM preconditioner is developed based on the solution of local harmonic problems. The BDDC preconditioner is proven to converge at a rate independent of the number of subdomains and only weakly dependent on the solution order or the number of elements per subdomain for a second-order elliptic problem. The BDDC preconditioner is extended to the solution of convection-dominated problems using a Robin-Robin interface condition. An inexact BDDC preconditioner is developed based on incomplete factorizations and a p-multigrid type coarse grid correction. It is shown that the incomplete factorization of the singular linear systems corresponding to local Neumann problems results in a nonsingular preconditioner. The inexact BDDC preconditioner converges in a similar number of iterations as the exact BDDC method, with significantly reduced CPU time. The domain decomposition preconditioners are extended to solve the Euler and Navier- Stokes systems of equations. An analysis is performed to determine the effect of boundary conditions on the convergence of domain decomposition methods. Optimized Robin-Robin interface conditions are derived for the BDDC preconditioner which significantly improve the performance relative to the standard Robin-Robin interface conditions. Both ASM and BDDC preconditioners are applied to solve several fundamental aerodynamic flows. Numerical results demonstrate that for high-Reynolds number flows, solved on anisotropic meshes, a coarse space is necessary in order to obtain good performance on more than 100 processors.by Laslo Tibor Diosady.Ph.D
    • …
    corecore