27 research outputs found

    AUTONOMOUS NAVIGATION OF SMALL UAVS BASED ON VEHICLE DYNAMIC MODEL

    Get PDF

    Error characteristics of a model-based integration approach for fixed-wing unmanned aerial vehicles

    Get PDF
    The paper presents the error characteristics of a vehicle dynamic model (VDM)-based integration architecture for fixed-wing unmanned aerial vehicles. Global navigation satellite system (GNSS) and inertial measurement unit measurements are fused in an extended Kalman filter (EKF) which uses the VDM as the main process model. Control inputs from the autopilot system are used to drive the navigation solution. Using a predefined trajectory with segments of both high and low dynamics and a variable wind profile, Monte Carlo simulations reveal a degrading performance in varying periods of GNSS outage lasting 10 s, 20 s, 30 s, 60 s and 90 s, respectively. These are followed by periods of re-acquisition where the navigation solution recovers. With a GNSS outage lasting less than 60 s, the position error gradually grows to a maximum of 8â‹…4 m while attitude errors in roll and pitch remain bounded, as opposed to an inertial navigation system (INS)/GNSS approach in which the navigation solution degrades rapidly. The model-based approach shows improved navigation performance even with parameter uncertainties over a conventional INS/GNSS integration approach

    A Model-based Tightly Coupled Architecture for Low-Cost Unmanned Aerial Vehicles for Real-Time Applications

    Get PDF
    This paper investigates the navigation performance of a vehicle dynamic model-based (VDM-based) tightly coupled architecture for a fixed-wing Unmanned Aerial Vehicle (UAV) during a global navigation satellite system (GNSS) outage for real-time applications. Unlike an Inertial Navigation System (INS) which uses inertial sensor measurements to propagate the navigation solution, the VDM uses control inputs from either the autopilot system or direct pilot commands to propagate the navigation states. The proposed architecture is tested using both raw GNSS observables (Pseudorange and Doppler frequency) and Micro-Electro-Mechanical Systems-grade (MEMS) Inertial Measurement Unit (IMU) measurements fused using an extended Kalman filter (EKF) to aid the navigation solution. Other than the navigation states, the state vector also includes IMU errors, wind velocity, VDM parameters, and receiver clock bias and drift. Simulation results revealed significant performance improvements with a decreasing number of satellites in view during 140 seconds of a GNSS outage. With two satellites visible during the GNSS outage, the position error improved by one order of magnitude as opposed to a tightly coupled INS/GNSS scheme. Real flight tests on a small fixed-wing UAV show the benefits of the approach with position error being an order of magnitude better as opposed to a tightly coupled INS/GNSS scheme with two satellites in view during 100 seconds of a GNSS outage

    Terrain Referenced Navigation Using SIFT Features in LiDAR Range-Based Data

    Get PDF
    The use of GNSS in aiding navigation has become widespread in aircraft. The long term accuracy of INS are enhanced by frequent updates of the highly precise position estimations GNSS provide. Unfortunately, operational environments exist where constant signal or the requisite number of satellites are unavailable, significantly degraded, or intentionally denied. This thesis describes a novel algorithm that uses scanning LiDAR range data, computer vision features, and a reference database to generate aircraft position estimations to update drifting INS estimates. The algorithm uses a single calibrated scanning LiDAR to sample the range and angle to the ground as an aircraft flies, forming a point cloud. The point cloud is orthorectified into a coordinate system common to a previously recorded reference of the flyover region. The point cloud is then interpolated into a Digital Elevation Model (DEM) of the ground. Range-based SIFT features are then extracted from both the airborne and reference DEMs. Features common to both the collected and reference range images are selected using a SIFT descriptor search. Geometrically inconsistent features are filtered out using RANSAC outlier removal, and surviving features are projected back to their source coordinates in the original point cloud. The point cloud features are used to calculate a least squares correspondence transform that aligns the collected features to the reference features. Applying the correspondence that best aligns the ground features is then applied to the nominal aircraft position, creating a new position estimate. The algorithm was tested on legacy flight data and typically produces position estimates within 10 meters of truth using threshold conditions

    Sensors Utilisation and Data Collection of Underground Mining

    Get PDF
    This study reviews IMU significance and performance for underground mine drone localisation. This research has designed a Kalman filter which extracts reliable information from raw data. Kalman filter for INS combines different measurements considering estimated errors to produce a trajectory including time, position and attitude. To evaluate the feasibility of the proposed method, a prototype has been designed and evaluated. Experimental results indicate that the designed Kalman filter estimates the internal states of a system

    Guidance, Navigation and Control for UAV Close Formation Flight and Airborne Docking

    Get PDF
    Unmanned aerial vehicle (UAV) capability is currently limited by the amount of energy that can be stored onboard or the small amount that can be gathered from the environment. This has historically lead to large, expensive vehicles with considerable fuel capacity. Airborne docking, for aerial refueling, is a viable solution that has been proven through decades of implementation with manned aircraft, but had not been successfully tested or demonstrated with UAVs. The prohibitive challenge is the highly accurate and reliable relative positioning performance that is required to dock with a small target, in the air, amidst external disturbances. GNSS-based navigation systems are well suited for reliable absolute positioning, but fall short for accurate relative positioning. Direct, relative sensor measurements are precise, but can be unreliable in dynamic environments. This work proposes an experimentally verified guidance, navigation and control solution that enables a UAV to autonomously rendezvous and dock with a drogue that is being towed by another autonomous UAV. A nonlinear estimation framework uses precise air-to-air visual observations to correct onboard sensor measurements and produce an accurate relative state estimate. The state of the drogue is estimated using known geometric and inertial characteristics and air-to-air observations. Setpoint augmentation algorithms compensate for leader turn dynamics during formation flight, and drogue physical constraints during docking. Vision-aided close formation flight has been demonstrated over extended periods; as close as 4 m; in wind speeds in excess of 25 km/h; and at altitudes as low as 15 m. Docking flight tests achieved numerous airborne connections over multiple flights, including five successful docking manoeuvres in seven minutes of a single flight. To the best of our knowledge, these are the closest formation flights performed outdoors and the first UAV airborne docking

    Innovative Solutions for Navigation and Mission Management of Unmanned Aircraft Systems

    Get PDF
    The last decades have witnessed a significant increase in Unmanned Aircraft Systems (UAS) of all shapes and sizes. UAS are finding many new applications in supporting several human activities, offering solutions to many dirty, dull, and dangerous missions, carried out by military and civilian users. However, limited access to the airspace is the principal barrier to the realization of the full potential that can be derived from UAS capabilities. The aim of this thesis is to support the safe integration of UAS operations, taking into account both the user's requirements and flight regulations. The main technical and operational issues, considered among the principal inhibitors to the integration and wide-spread acceptance of UAS, are identified and two solutions for safe UAS operations are proposed: A. Improving navigation performance of UAS by exploiting low-cost sensors. To enhance the performance of the low-cost and light-weight integrated navigation system based on Global Navigation Satellite System (GNSS) and Micro Electro-Mechanical Systems (MEMS) inertial sensors, an efficient calibration method for MEMS inertial sensors is required. Two solutions are proposed: 1) The innovative Thermal Compensated Zero Velocity Update (TCZUPT) filter, which embeds the compensation of thermal effect on bias in the filter itself and uses Back-Propagation Neural Networks to build the calibration function. Experimental results show that the TCZUPT filter is faster than the traditional ZUPT filter in mapping significant bias variations and presents better performance in the overall testing period. Moreover, no calibration pre-processing stage is required to keep measurement drift under control, improving the accuracy, reliability, and maintainability of the processing software; 2) A redundant configuration of consumer grade inertial sensors to obtain a self-calibration of typical inertial sensors biases. The result is a significant reduction of uncertainty in attitude determination. In conclusion, both methods improve dead-reckoning performance for handling intermittent GNSS coverage. B. Proposing novel solutions for mission management to support the Unmanned Traffic Management (UTM) system in monitoring and coordinating the operations of a large number of UAS. Two solutions are proposed: 1) A trajectory prediction tool for small UAS, based on Learning Vector Quantization (LVQ) Neural Networks. By exploiting flight data collected when the UAS executes a pre-assigned flight path, the tool is able to predict the time taken to fly generic trajectory elements. Moreover, being self-adaptive in constructing a mathematical model, LVQ Neural Networks allow creating different models for the different UAS types in several environmental conditions; 2) A software tool aimed at supporting standardized procedures for decision-making process to identify UAS/payload configurations suitable for any type of mission that can be authorized standing flight regulations. The proposed methods improve the management and safe operation of large-scale UAS missions, speeding up the flight authorization process by the UTM system and supporting the increasing level of autonomy in UAS operations

    Design of autonomous sustainable unmanned aerial vehicle - A novel approach to its dynamic wireless power transfer

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Electric UAVs are presently being used widely in civilian duties such as security, surveillance, and disaster relief. The use of Unmanned Aerial Vehicle (UAV) has increased dramatically over the past years in different areas/fields such as marines, mountains, wild environments. Nowadays, there are many electric UAVs development with fast computational speed and autonomous flying has been a reality by fusing many sensors such as camera tracking sensor, obstacle avoiding sensor, radar sensor, etc. But there is one main problem still not able to overcome which is power requirement for continuous autonomous operation. When the operation needs more power, but batteries can only give for 20 to 30 mins of flight time. These types of system are not reliable for long term civilian operation because we need to recharge or replace batteries by landing the craft every time when we want to continue the operation. The large batteries also take more loads on the UAV which is also not a reliable system. To eliminate these obstacles, there should a recharging wireless power station in ground which can transmit power to these small UAVs wirelessly for long term operation. There will be camera attached in the drone to detect and hover above the Wireless Power Transfer device which got receiving and transmitting station can be use with deep learning and sensor fusion techniques for more reliable flight operations. This thesis explores the use of dynamic wireless power to transfer energy using novel rotating WPT charging technique to the UAV with improved range, endurance, and average speed by giving extra hours in the air. The hypothesis that was created has a broad application beyond UAVs. The drone autonomous charging was mostly done by detecting a rotating WPT receiver connected to main power outlet that served as a recharging platform using deep neural vision capabilities. It was the purpose of the thesis to provide an alternative to traditional self-charging systems that relies purely on static WPT method and requires little distance between the vehicle and receiver. When the UAV camera detect the WPT receiving station, it will try to align and hover using onboard sensors for best power transfer efficiency. Since this strategy relied on traditional automatic drone landing technique, but the target is rotating all the time which needs smart approaches like deep learning and sensor fusion. The simulation environment was created and tested using robot operating system on a Linux operating system using a model of the custom-made drone. Experiments on the charging of the drone confirmed that the intelligent dynamic wireless power transfer (DWPT) method worked successfully while flying on air

    Development of GNSS/INS/SLAM Algorithms for Navigation in Constrained Environments

    Get PDF
    For land vehicles, the requirements of the navigation solution in terms of accuracy, integrity, continuity and availability are more and more stringent, especially with the development of autonomous vehicles. This type of application requires a navigation system not only capable of providing an accurate and reliable position, velocity and attitude solution continuously but also having a reasonable cost. In the last decades, GNSS has been the most widely used navigation system especially with the receivers decreasing cost over the years. However, despite of its capability to provide absolute navigation information with long time accuracy, this system suffers from problems related to signal propagation especially in urban environments where buildings, trees and other structures hinder the reception of GNSS signals and degrade their quality. This can result in significant positioning error exceeding in some cases a kilometer. Many techniques are proposed in the literature to mitigate these problems and improve the GNSS accuracy. Unfortunately, all these techniques have limitations. A possible way to overcome these problems is to fuse “good” GNSS measurements with other sensors having complementary characteristics. In fact, by exploiting the complementarity of sensors, hybridization algorithms can improve the navigation solution compared to solutions provided by each stand-alone sensor. Generally, the most widely implemented hybridization algorithms for land vehicles fuse GNSS measurements with inertial and/or odometric data. Thereby, these Dead-Reckoning (DR) sensors ensure the system continuity when GNSS information is unavailable and improve the system performance when GNSS signals are degraded, and, in return the GNSS limits the drift of the DR solution if it is available. However the performance achieved by this hybridization depends thoroughly on the quality of the DR sensor used especially when GNSS signals are degraded or unavailable. Therefore, this Ph.D. thesis, which is part of a common French research project involving two laboratories and three companies, aims at extending the classical hybridization architecture by including other sensors capable of improving the navigation performances while having a low cost and being easily embeddable. For this reason, the use of vision-based navigation techniques to provide additional information is proposed in this thesis. In fact, cameras have become an attractive positioning sensor recently with the development of Visual Odometry and Simultaneous Localization and Mapping (SLAM) techniques, capable of providing accurate navigation solution while having reasonable cost. In addition, visual navigation solutions have a good quality in textured environments where GNSS is likely to encounter bad performance. Therefore, this work focuses on developing a multi-sensor fusion architecture integrating visual information with the previously mentioned sensors. In particular, the contribution of this information to improve the vision-free navigation system performance is highlighted. The proposed architecture respects the project constraints consisting of developing a versatile and modular low-cost system capable of providing continuously a good navigation solution, where each sensor may be easily discarded when its information should not be used in the navigation solutio

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp
    corecore