43 research outputs found

    Bayesian algorithms for mobile terminal positioning in outdoor wireless environments

    Get PDF
    [no abstract

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Wavefield modeling and signal processing for sensor arrays of arbitrary geometry

    Get PDF
    Sensor arrays and related signal processing methods are key technologies in many areas of engineering including wireless communication systems, radar and sonar as well as in biomedical applications. Sensor arrays are a collection of sensors that are placed at distinct locations in order to sense physical phenomena or synthesize wavefields. Spatial processing from the multichannel output of the sensor array is a typical task. Such processing is useful in areas including wireless communications, radar, surveillance and indoor positioning. In this dissertation, fundamental theory and practical methods of wavefield modeling for radio-frequency array processing applications are developed. Also, computationally-efficient high-resolution and optimal signal processing methods for sensor arrays of arbitrary geometry are proposed. Methods for taking into account array nonidealities are introduced as well. Numerical results illustrating the performance of the proposed methods are given using real-world antenna arrays. Wavefield modeling and manifold separation for vector-fields such as completely polarized electromagnetic wavefields and polarization sensitive arrays are proposed. Wavefield modeling is used for writing the array output in terms of two independent parts, namely the sampling matrix depending on the employed array including nonidealities and the coefficient vector depending on the wavefield. The superexponentially decaying property of the sampling matrix for polarization sensitive arrays is established. Two estimators of the sampling matrix from calibration measurements are proposed and their statistical properties are established. The array processing methods developed in this dissertation concentrate on polarimetric beamforming as well as on high-resolution and optimal azimuth, elevation and polarization parameter estimation. The proposed methods take into account array nonidealities such as mutual coupling, cross-polarization effects and mounting platform reflections. Computationally-efficient solutions based on polynomial rooting techniques and fast Fourier transform are achieved without restricting the proposed methods to regular array geometries. A novel expression for the Cramér-Rao bound in array processing that is tight for real-world arrays with nonidealities in the asymptotic regime is also proposed. A relationship between spherical harmonics and 2-D Fourier basis, called equivalence matrix, is established. A novel fast spherical harmonic transform is proposed, and a one-to-one mapping between spherical harmonic and 2-D Fourier spectra is found. Improvements to the minimum number of samples on the sphere that are needed in order to avoid aliasing are also proposed
    corecore