15,988 research outputs found

    An Economic Model-Based Predictive Control to Manage the Users' Thermal Comfort in a Building

    Get PDF
    The goal of maintaining users' thermal comfort conditions in indoor environments may require complex regulation procedures and a proper energy management. This problem is being widely analyzed, since it has a direct effect on users' productivity. This paper presents an economic model-based predictive control (MPC) whose main strength is the use of the day-ahead price (DAP) in order to predict the energy consumption associated with the heating, ventilation and air conditioning (HVAC). In this way, the control system is able to maintain a high thermal comfort level by optimizing the use of the HVAC system and to reduce, at the same time, the energy consumption associated with it, as much as possible. Later, the performance of the proposed control system is tested through simulations with a non-linear model of a bioclimatic building room. Several simulation scenarios are considered as a test-bed. From the obtained results, it is possible to conclude that the control system has a good behavior in several situations, i.e., it can reach the users' thermal comfort for the analyzed situations, whereas the HVAC use is adjusted through the DAP; therefore, the energy savings associated with the HVAC is increased.Spanish Ministry of Science and Innovation [DPI2014-56364-C2-1-R]; EU-ERDF funds; Competitiveness and ERDF funds; Fundacion Iberdrola Espana; Portuguese Foundation for Science & Technology, through IDMEC, under LAETA [ID/EMS/50022/2013

    Bond graph based sensitivity and uncertainty analysis modelling for micro-scale multiphysics robust engineering design

    Get PDF
    Components within micro-scale engineering systems are often at the limits of commercial miniaturization and this can cause unexpected behavior and variation in performance. As such, modelling and analysis of system robustness plays an important role in product development. Here schematic bond graphs are used as a front end in a sensitivity analysis based strategy for modelling robustness in multiphysics micro-scale engineering systems. As an example, the analysis is applied to a behind-the-ear (BTE) hearing aid. By using bond graphs to model power flow through components within different physical domains of the hearing aid, a set of differential equations to describe the system dynamics is collated. Based on these equations, sensitivity analysis calculations are used to approximately model the nature and the sources of output uncertainty during system operation. These calculations represent a robustness evaluation of the current hearing aid design and offer a means of identifying potential for improved designs of multiphysics systems by way of key parameter identification

    Vision based motion control for a humanoid head

    Get PDF
    This paper describes the design of a motion control algorithm for a humanoid robotic head, which consists of a neck with four degrees of freedom and two eyes (a stereo pair system) that tilt on a common axis and rotate sideways freely. The kinematic and dynamic properties of the head are analyzed and modeled using screw theory. The motion control algorithm is designed to receive, as an input, the output of a vision processing algorithm and to exploit the redundancy of the system for the realization of the movements. This algorithm is designed to enable the head to focus on and to follow a target, showing human-like motions. The performance of the control algorithm has been tested in a simulated environment and, then, experimentally applied to the real humanoid head
    • 

    corecore