5,914 research outputs found

    Joint optimization of transceivers with decision feedback and bit loading

    Get PDF
    The transceiver optimization problem for MIMO channels has been considered in the past with linear receivers as well as with decision feedback (DFE) receivers. Joint optimization of bit allocation, precoder, and equalizer has in the past been considered only for the linear transceiver (transceiver with linear precoder and linear equalizer). It has also been observed that the use of DFE even without bit allocation in general results in better performance that linear transceivers with bit allocation. This paper provides a general study of this for transceivers with the zero-forcing constraint. It is formally shown that when the bit allocation, precoder, and equalizer are jointly optimized, linear transceivers and transceivers with DFE have identical performance in the sense that transmitted power is identical for a given bit rate and error probability. The developments of this paper are based on the generalized triangular decomposition (GTD) recently introduced by Jiang, Li, and Hager. It will be shown that a broad class of GTD-based systems solve the optimal DFE problem with bit allocation. The special case of a linear transceiver with optimum bit allocation will emerge as one of the many solutions

    MIMO Transceivers With Decision Feedback and Bit Loading: Theory and Optimization

    Get PDF
    This paper considers MIMO transceivers with linear precoders and decision feedback equalizers (DFEs), with bit allocation at the transmitter. Zero-forcing (ZF) is assumed. Considered first is the minimization of transmitted power, for a given total bit rate and a specified set of error probabilities for the symbol streams. The precoder and DFE matrices are optimized jointly with bit allocation. It is shown that the generalized triangular decomposition (GTD) introduced by Jiang, Li, and Hager offers an optimal family of solutions. The optimal linear transceiver (which has a linear equalizer rather than a DFE) with optimal bit allocation is a member of this family. This shows formally that, under optimal bit allocation, linear and DFE transceivers achieve the same minimum power. The DFE transceiver using the geometric mean decomposition (GMD) is another member of this optimal family, and is such that optimal bit allocation yields identical bits for all symbol streams—no bit allocation is necessary—when the specified error probabilities are identical for all streams. The QR-based system used in VBLAST is yet another member of the optimal family and is particularly well-suited when limited feedback is allowed from receiver to transmitter. Two other optimization problems are then considered: a) minimization of power for specified set of bit rates and error probabilities (the QoS problem), and b) maximization of bit rate for fixed set of error probabilities and power. It is shown in both cases that the GTD yields an optimal family of solutions

    Tensor Rank, Invariants, Inequalities, and Applications

    Full text link
    Though algebraic geometry over C\mathbb C is often used to describe the closure of the tensors of a given size and complex rank, this variety includes tensors of both smaller and larger rank. Here we focus on the n×n×nn\times n\times n tensors of rank nn over C\mathbb C, which has as a dense subset the orbit of a single tensor under a natural group action. We construct polynomial invariants under this group action whose non-vanishing distinguishes this orbit from points only in its closure. Together with an explicit subset of the defining polynomials of the variety, this gives a semialgebraic description of the tensors of rank nn and multilinear rank (n,n,n)(n,n,n). The polynomials we construct coincide with Cayley's hyperdeterminant in the case n=2n=2, and thus generalize it. Though our construction is direct and explicit, we also recast our functions in the language of representation theory for additional insights. We give three applications in different directions: First, we develop basic topological understanding of how the real tensors of complex rank nn and multilinear rank (n,n,n)(n,n,n) form a collection of path-connected subsets, one of which contains tensors of real rank nn. Second, we use the invariants to develop a semialgebraic description of the set of probability distributions that can arise from a simple stochastic model with a hidden variable, a model that is important in phylogenetics and other fields. Third, we construct simple examples of tensors of rank 2n12n-1 which lie in the closure of those of rank nn.Comment: 31 pages, 1 figur

    Numerical range for random matrices

    Full text link
    We analyze the numerical range of high-dimensional random matrices, obtaining limit results and corresponding quantitative estimates in the non-limit case. For a large class of random matrices their numerical range is shown to converge to a disc. In particular, numerical range of complex Ginibre matrix almost surely converges to the disk of radius 2\sqrt{2}. Since the spectrum of non-hermitian random matrices from the Ginibre ensemble lives asymptotically in a neighborhood of the unit disk, it follows that the outer belt of width 21\sqrt{2}-1 containing no eigenvalues can be seen as a quantification the non-normality of the complex Ginibre random matrix. We also show that the numerical range of upper triangular Gaussian matrices converges to the same disk of radius 2\sqrt{2}, while all eigenvalues are equal to zero and we prove that the operator norm of such matrices converges to 2e\sqrt{2e}.Comment: 23 pages, 4 figure
    corecore