10,470 research outputs found

    Recent Developments in Quantitative Graph Theory: Information Inequalities for Networks

    Get PDF
    In this article, we tackle a challenging problem in quantitative graph theory. We establish relations between graph entropy measures representing the structural information content of networks. In particular, we prove formal relations between quantitative network measures based on Shannon's entropy to study the relatedness of those measures. In order to establish such information inequalities for graphs, we focus on graph entropy measures based on information functionals. To prove such relations, we use known graph classes whose instances have been proven useful in various scientific areas. Our results extend the foregoing work on information inequalities for graphs

    Information inequalities and Generalized Graph Entropies

    Get PDF
    In this article, we discuss the problem of establishing relations between information measures assessed for network structures. Two types of entropy based measures namely, the Shannon entropy and its generalization, the R\'{e}nyi entropy have been considered for this study. Our main results involve establishing formal relationship, in the form of implicit inequalities, between these two kinds of measures when defined for graphs. Further, we also state and prove inequalities connecting the classical partition-based graph entropies and the functional-based entropy measures. In addition, several explicit inequalities are derived for special classes of graphs.Comment: A preliminary version. To be submitted to a journa

    Minimum cost mirror sites using network coding: Replication vs. coding at the source nodes

    Get PDF
    Content distribution over networks is often achieved by using mirror sites that hold copies of files or portions thereof to avoid congestion and delay issues arising from excessive demands to a single location. Accordingly, there are distributed storage solutions that divide the file into pieces and place copies of the pieces (replication) or coded versions of the pieces (coding) at multiple source nodes. We consider a network which uses network coding for multicasting the file. There is a set of source nodes that contains either subsets or coded versions of the pieces of the file. The cost of a given storage solution is defined as the sum of the storage cost and the cost of the flows required to support the multicast. Our interest is in finding the storage capacities and flows at minimum combined cost. We formulate the corresponding optimization problems by using the theory of information measures. In particular, we show that when there are two source nodes, there is no loss in considering subset sources. For three source nodes, we derive a tight upper bound on the cost gap between the coded and uncoded cases. We also present algorithms for determining the content of the source nodes.Comment: IEEE Trans. on Information Theory (to appear), 201

    Cores of Cooperative Games in Information Theory

    Get PDF
    Cores of cooperative games are ubiquitous in information theory, and arise most frequently in the characterization of fundamental limits in various scenarios involving multiple users. Examples include classical settings in network information theory such as Slepian-Wolf source coding and multiple access channels, classical settings in statistics such as robust hypothesis testing, and new settings at the intersection of networking and statistics such as distributed estimation problems for sensor networks. Cooperative game theory allows one to understand aspects of all of these problems from a fresh and unifying perspective that treats users as players in a game, sometimes leading to new insights. At the heart of these analyses are fundamental dualities that have been long studied in the context of cooperative games; for information theoretic purposes, these are dualities between information inequalities on the one hand and properties of rate, capacity or other resource allocation regions on the other.Comment: 12 pages, published at http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2008/318704 in EURASIP Journal on Wireless Communications and Networking, Special Issue on "Theory and Applications in Multiuser/Multiterminal Communications", April 200

    On the Distribution of Random Geometric Graphs

    Get PDF
    Random geometric graphs (RGGs) are commonly used to model networked systems that depend on the underlying spatial embedding. We concern ourselves with the probability distribution of an RGG, which is crucial for studying its random topology, properties (e.g., connectedness), or Shannon entropy as a measure of the graph's topological uncertainty (or information content). Moreover, the distribution is also relevant for determining average network performance or designing protocols. However, a major impediment in deducing the graph distribution is that it requires the joint probability distribution of the n(n−1)/2n(n-1)/2 distances between nn nodes randomly distributed in a bounded domain. As no such result exists in the literature, we make progress by obtaining the joint distribution of the distances between three nodes confined in a disk in R2\mathbb{R}^2. This enables the calculation of the probability distribution and entropy of a three-node graph. For arbitrary nn, we derive a series of upper bounds on the graph entropy; in particular, the bound involving the entropy of a three-node graph is tighter than the existing bound which assumes distances are independent. Finally, we provide numerical results on graph connectedness and the tightness of the derived entropy bounds.Comment: submitted to the IEEE International Symposium on Information Theory 201

    Brascamp-Lieb Inequality and Its Reverse: An Information Theoretic View

    Full text link
    We generalize a result by Carlen and Cordero-Erausquin on the equivalence between the Brascamp-Lieb inequality and the subadditivity of relative entropy by allowing for random transformations (a broadcast channel). This leads to a unified perspective on several functional inequalities that have been gaining popularity in the context of proving impossibility results. We demonstrate that the information theoretic dual of the Brascamp-Lieb inequality is a convenient setting for proving properties such as data processing, tensorization, convexity and Gaussian optimality. Consequences of the latter include an extension of the Brascamp-Lieb inequality allowing for Gaussian random transformations, the determination of the multivariate Wyner common information for Gaussian sources, and a multivariate version of Nelson's hypercontractivity theorem. Finally we present an information theoretic characterization of a reverse Brascamp-Lieb inequality involving a random transformation (a multiple access channel).Comment: 5 pages; to be presented at ISIT 201
    • …
    corecore