5,644 research outputs found

    Investigating IoT Middleware Platforms for Smart Application Development

    Full text link
    With the growing number of Internet of Things (IoT) devices, the data generated through these devices is also increasing. By 2030, it is been predicted that the number of IoT devices will exceed the number of human beings on earth. This gives rise to the requirement of middleware platform that can manage IoT devices, intelligently store and process gigantic data generated for building smart applications such as Smart Cities, Smart Healthcare, Smart Industry, and others. At present, market is overwhelming with the number of IoT middleware platforms with specific features. This raises one of the most serious and least discussed challenge for application developer to choose suitable platform for their application development. Across the literature, very little attempt is done in classifying or comparing IoT middleware platforms for the applications. This paper categorizes IoT platforms into four categories namely-publicly traded, open source, developer friendly and end-to-end connectivity. Some of the popular middleware platforms in each category are investigated based on general IoT architecture. Comparison of IoT middleware platforms in each category, based on basic, sensing, communication and application development features is presented. This study can be useful for IoT application developers to select the most appropriate platform according to their application requirement

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Case Study - IPv6 based building automation solution integration into an IPv4 Network Service Provider infrastructure

    Get PDF
    The case study presents a case study describing an Internet Protocol (IP) version 6 (v6) introduction to an IPv4 Internet Service Provider (ISP) network infrastructure. The case study driver is an ISP willing to introduce a new “killer” service related to Internet of Things (IoT) style building automation. The provider and cooperation of third party companies specialized in building automation will provide the service. The ISP has to deliver the network access layer and to accommodate the building automation solution traffic throughout its network infrastructure. The third party companies are system integrators and building automation solution vendors. IPv6 is suitable for such solutions due to the following reasons. The operator can’t accommodate large number of IPv4 embedded devices in its current network due to the lack of address space and the fact that many of those will need clear 2 way IP communication channel. The Authors propose a strategy for IPv6 introduction into operator infrastructure based on the current network architecture present service portfolio and several transition mechanisms. The strategy has been applied in laboratory with setup close enough to the current operator’s network. The criterion for a successful experiment is full two-way IPv6 application layer connectivity between the IPv6 server and the IPv6 Internet of Things (IoT) cloud

    A gap analysis of Internet-of-Things platforms

    Full text link
    We are experiencing an abundance of Internet-of-Things (IoT) middleware solutions that provide connectivity for sensors and actuators to the Internet. To gain a widespread adoption, these middleware solutions, referred to as platforms, have to meet the expectations of different players in the IoT ecosystem, including device providers, application developers, and end-users, among others. In this article, we evaluate a representative sample of these platforms, both proprietary and open-source, on the basis of their ability to meet the expectations of different IoT users. The evaluation is thus more focused on how ready and usable these platforms are for IoT ecosystem players, rather than on the peculiarities of the underlying technological layers. The evaluation is carried out as a gap analysis of the current IoT landscape with respect to (i) the support for heterogeneous sensing and actuating technologies, (ii) the data ownership and its implications for security and privacy, (iii) data processing and data sharing capabilities, (iv) the support offered to application developers, (v) the completeness of an IoT ecosystem, and (vi) the availability of dedicated IoT marketplaces. The gap analysis aims to highlight the deficiencies of today's solutions to improve their integration to tomorrow's ecosystems. In order to strengthen the finding of our analysis, we conducted a survey among the partners of the Finnish IoT program, counting over 350 experts, to evaluate the most critical issues for the development of future IoT platforms. Based on the results of our analysis and our survey, we conclude this article with a list of recommendations for extending these IoT platforms in order to fill in the gaps.Comment: 15 pages, 4 figures, 3 tables, Accepted for publication in Computer Communications, special issue on the Internet of Things: Research challenges and solution
    corecore