7,353 research outputs found

    Parameterized Construction of Program Representations for Sparse Dataflow Analyses

    Get PDF
    Data-flow analyses usually associate information with control flow regions. Informally, if these regions are too small, like a point between two consecutive statements, we call the analysis dense. On the other hand, if these regions include many such points, then we call it sparse. This paper presents a systematic method to build program representations that support sparse analyses. To pave the way to this framework we clarify the bibliography about well-known intermediate program representations. We show that our approach, up to parameter choice, subsumes many of these representations, such as the SSA, SSI and e-SSA forms. In particular, our algorithms are faster, simpler and more frugal than the previous techniques used to construct SSI - Static Single Information - form programs. We produce intermediate representations isomorphic to Choi et al.'s Sparse Evaluation Graphs (SEG) for the family of data-flow problems that can be partitioned per variables. However, contrary to SEGs, we can handle - sparsely - problems that are not in this family

    Program transformations using temporal logic side conditions

    Get PDF
    This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program

    Industrial applications of ASF+SDF

    Get PDF
    In recent years, a number of Dutch companies have used the algebraic specification formalism ASF+SDF. Bank MeesPierson has specified a language for describing interest rate products, their translation into COBOL, and their generation from interactive questionnaires. A consultancy company has specified a language to represent the company's object-oriented models, and the compilation of this language into Access. Bank ABN-AMRO has started investigating the use of algebraic specifications for renovating legacy COBOL systems. We discuss the implications of such projects for teaching algebraic specifications and software engineering, and the role students have been playing in these projects

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    Efficient design and evaluation of countermeasures against fault attacks using formal verification

    Get PDF
    This paper presents a formal verification framework and tool that evaluates the robustness of software countermeasures against fault-injection attacks. By modeling reference assembly code and its protected variant as automata, the framework can generate a set of equations for an SMT solver, the solutions of which represent possible attack paths. Using the tool we developed, we evaluated the robustness of state-of-the-art countermeasures against fault injection attacks. Based on insights gathered from this evaluation, we analyze any remaining weaknesses and propose applications of these countermeasures that are more robust

    Declarative Specification of Intraprocedural Control-flow and Dataflow Analysis

    Get PDF
    Static program analysis plays a crucial role in ensuring the quality and security of software applications by detecting and fixing bugs, and potential security vulnerabilities in the code. The use of declarative paradigms in dataflow analysis as part of static program analysis has become increasingly popular in recent years. This is due to its enhanced expressivity and modularity, allowing for a higher-level programming approach, resulting in easy and efficient development.The aim of this thesis is to explore the design and implementation of control-flow and dataflow analyses using the declarative Reference Attribute Grammars formalism. Specifically, we focus on the construction of analyses directly on the source code rather than on an intermediate representation.The main result of this thesis is our language-agnostic framework, called IntraCFG. IntraCFG enables efficient and effective dataflow analysis by allowing the construction of precise and source-level control-flow graphs. The framework superimposes control-flow graphs on top of the abstract syntax tree of the program. The effectiveness of IntraCFG is demonstrated through two case studies, IntraJ and IntraTeal. These case studies showcase the potential and flexibility of IntraCFG in diverse contexts, such as bug detection and education. IntraJ supports the Java programming language, while IntraTeal is a tool designed for teaching program analysis for an educational language, Teal.IntraJ has proven to be faster than and as precise as well-known industrial tools. The combination of precision, performance, and on-demand evaluation in IntraJ leads to low latency in querying the analysis results. This makes IntraJ a suitable tool for use in interactive tools. Preliminary experiments have also been conducted to demonstrate how IntraJ can be used to support interactive bug detection and fixing.Additionally, this thesis presents JFeature, a tool for automatically extracting and summarising the features of a Java corpus, including the use of different Java features (e.g., use of Lambda Expressions) across different Java versions. JFeature provides researchers and developers with a deeper understanding of the characteristics of corpora, enabling them to identify suitable benchmarks for the evaluation of their tools and methodologies
    • ā€¦
    corecore