5,372 research outputs found

    Industrial process monitoring by means of recurrent neural networks and Self Organizing Maps

    Get PDF
    Industrial manufacturing plants often suffer from reliability problems during their day-to-day operations which have the potential for causing a great impact on the effectiveness and performance of the overall process and the sub-processes involved. Time-series forecasting of critical industrial signals presents itself as a way to reduce this impact by extracting knowledge regarding the internal dynamics of the process and advice any process deviations before it affects the productive process. In this paper, a novel industrial condition monitoring approach based on the combination of Self Organizing Maps for operating point codification and Recurrent Neural Networks for critical signal modeling is proposed. The combination of both methods presents a strong synergy, the information of the operating condition given by the interpretation of the maps helps the model to improve generalization, one of the drawbacks of recurrent networks, while assuring high accuracy and precision rates. Finally, the complete methodology, in terms of performance and effectiveness is validated experimentally with real data from a copper rod industrial plant.Postprint (published version

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Decision support with data-analysis methods in a nuclear power plant

    Get PDF
    Early fault detection is an important issue in nuclear industry. Methods based on self-organizing map (SOM) in dynamic systems are discussed and developed to help operators and plant experts in their decision making and used together with other methods. Visualization issues are in an important role in this research. Prototype systems are built to be able to test the basic principles. Five different studies are presented in detail. This report summarizes the test case 4 (TC4) "Decision support at a nuclear power plant" in NoTeS and NoTeS2 projects in TEKES MASI research program

    Environmental risk assessment in the mediterranean region using artificial neural networks

    Get PDF
    Los mapas auto-organizados han demostrado ser una herramienta apropiada para la clasificación y visualización de grupos de datos complejos. Redes neuronales, como los mapas auto-organizados (SOM) o las redes difusas ARTMAP (FAM), se utilizan en este estudio para evaluar el impacto medioambiental acumulativo en diferentes medios (aguas subterráneas, aire y salud humana). Los SOMs también se utilizan para generar mapas de concentraciones de contaminantes en aguas subterráneas simulando las técnicas geostadísticas de interpolación como kriging y cokriging. Para evaluar la confiabilidad de las metodologías desarrolladas en esta tesis, se utilizan procedimientos de referencia como puntos de comparación: la metodología DRASTIC para el estudio de vulnerabilidad en aguas subterráneas y el método de interpolación espacio-temporal conocido como Bayesian Maximum Entropy (BME) para el análisis de calidad del aire. Esta tesis contribuye a demostrar las capacidades de las redes neuronales en el desarrollo de nuevas metodologías y modelos que explícitamente permiten evaluar las dimensiones temporales y espaciales de riesgos acumulativos

    Topographic mapping for quality inspection and intelligent filtering of smart-bracelet data

    Get PDF
    Wrist-worn wearable devices equipped with heart activity sensors can provide valuable data that can be used for preventative health. However, hearth activity analysis from these devices suffers from noise introduced by motion artifacts. Methods traditionally used to remove outliers based on motion data can yield to discarding clean data, if some movement was present, and accepting noisy data, i.e., subject was still but the sensor was misplaced. This work shows that self-organizing maps (SOMs) can be used to effectively accept or reject sections of heart data collected from unreliable devices, such as wrist-worn devices. In particular, the proposed SOM-based filter can accept a larger amount of measurements (less false negatives) with an higher overall quality with respect to methods solely based on statistical analysis of motion data. We provide an empirical analysis on real-world wearable data, comprising heart and motion data of users. We show how topographic mapping can help identifying and interpreting patterns in the sensor data and help relating them to an assessment of user state. More importantly, our experimental results show the proposed approach is able to retain almost twice the amount of data while keeping samples with an error that is an order of magnitude lower with respect to a filter based on accelerometric data

    Unexpected Event Prediction in Wire Electrical Discharge Machining Using Deep Learning Techniques

    Get PDF
    Theoretical models of manufacturing processes provide a valuable insight into physical phenomena but their application to practical industrial situations is sometimes difficult. In the context of Industry 4.0, artificial intelligence techniques can provide efficient solutions to actual manufacturing problems when big data are available. Within the field of artificial intelligence, the use of deep learning is growing exponentially in solving many problems related to information and communication technologies (ICTs) but it still remains scarce or even rare in the field of manufacturing. In this work, deep learning is used to efficiently predict unexpected events in wire electrical discharge machining (WEDM), an advanced machining process largely used for aerospace components. The occurrence of an unexpected event, namely the change of thickness of the machined part, can be effectively predicted by recognizing hidden patterns from process signals. Based on WEDM experiments, different deep learning architectures were tested. By using a combination of a convolutional layer with gated recurrent units, thickness variation in the machined component could be predicted in 97.4% of cases, at least 2 mm in advance, which is extremely fast, acting before the process has degraded. New possibilities of deep learning for high-performance machine tools must be examined in the near future.The authors gratefully acknowledge the funding support received from the Spanish Ministry of Economy and Competitiveness and the FEDER operation program for funding the project "Scientific models and machine-tool advanced sensing techniques for efficient machining of precision components of Low Pressure Turbines" (DPI2017-82239-P) and UPV/EHU (UFI 11/29). The authors would also like to thank Euskampus and ONA-EDM for their support in this project
    corecore